• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Analysis of quasisymmetric functions and Teichmuller space

Research Project

Project/Area Number 13640185
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka City University

Principal Investigator

SAKAN Ken-ichi  Osaka City University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70110856)

Co-Investigator(Kenkyū-buntansha) 小森 洋平  大阪市立大学, 大学院・理学研究科, 講師 (70264794)
NISHIO Masaharu  Osaka City University, Graduate School of Science, Lecturer, 大学院・理学研究科, 助教授 (90228156)
IMAYOSHI Yoichi  Osaka City University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30091656)
NAKANISHI Toshihiro  Nagoya University, Graduate School of Polymathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50701546)
TUGAWA Toshiyuki  Hiroshima University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30235858)
Project Period (FY) 2001 – 2003
Keywordsquasisymmetric function / quasiconformal mapping / quasiconformal extension / extremal extension / crossratio / conjugte function / crossratio / conjugate function / harmonic extension / Teichmuller space
Research Abstract

The head investigator Sakan published jointly with the foreign joint worker D.Partyka "On pseudo-metrics on the space of generalized quasisymmetric automorphisms of a Jordan curve" and "On Heinz's inequality ". In the former paper they introduced, with no use of quasiconformal mappings, some pseudo-metrics into the space of generalized quasisymmetric automorphisms of a Jordan curve, and discussed some applications to topological properties of the Teichmiuller pseudo-metric. In the latter paper they generalized the Heinz's result on one-to-one harmonic mappings F of the unit disc onto itself in the case where F is the Poisson integral of a sense-preserving homeomorphic self-mapping of the unit circle. As an application they inferred a version of Heinz's inequality for harmonic and quasiconformal self-mappings of the unit disc. In a paper to be. submitted, they show an asymptotically sharp variant of Heinz's inequality for harmonic and quasiconformal self-mappings of the unit disc.
For the analysis of quasisymmetry, it is important to analyze the representations of maximal dilatations and so on in terms of harmonic measure and crossratio. Furthermore, it turned out that boundary dilatations, conjugate functions and Cauchy singular integrals are deeply related to the quasiconformality of harmonic extensions. Sakan has discussed about these analyses, with investigators Nishio and Yoshida from the viewpoint of potential and probability theory. Further, on extremal extensions which are quite related to boundary dilatations Sakan has contacted foreign joint workers Y.Shen, S.Wu and investigators Ohtake and Sugawa. Moreover, Sakan has discussed with investigators Imayoshi, Komori and Nakanishi about the relation of their researches on Teichmuller space and our research project.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] D.Partyka, K.Sakan: "On pseudo-metrics on the space of generalized quasisymmetric automorphisms of a Jordan curve"Ann.Univ.Mariae Curie-Sklodowska Sect, A. 55. 115-138 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] D.Partyka, K.Sakan: "On Heinz's inequality"Bull.Soc.Sci, Letters Lodz Ser.Rech.Deform.36. 52. 27-34 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Imayoshi, H.Ito, H.Yamamoto: "On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces with two specific points"Osaka J.Math.. 40. 659-685 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ikegami, M.Nishio: "Q-compectification of harmonic spaces and the choquet simplex"Osaka J.Math.. 39. 931-944 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] V.Gutlyanskii, T.Sugawa: "On Lipschitz continuity of quasiconformal mappings"Report.Univ.Jyvaskyla. 83. 91-108 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sugawa: "A remark on the Ahlfors-Lehto univalence criterion"Ann.Acad.Sci.Fenn.Ser.A I Math.. 27. 151-161 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 今吉洋一, 佐官謙一, 西尾昌治, 小森洋平, 須川敏幸を含む10人の共訳: "ヴィジュアル複素解析.T.ニーダム著、共訳"培風館. 662 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sakan, D.Partyka: "On pseudo-metrics on the space of generalized quasisymmetric automorphisms of a Jordan curve"Ann.Univ.Mariae Curie-Sklodowska Sect.A. 55. 115-138 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Sakan, D.Partyka: "On Heinz's inequality"Bull.Soc.Sci.Letters Lodz Ser.Rech.Deform.. 36.52. 27-34 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Imayoshi, M.Ito, H.Yamamoto: "On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces with two specified points"Osaka J.Math.. 40. 659-685 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ikegami, M.Nishio: "Q-compactification of harmonic spaces and the Choquet simples"Osaka J.Math.. 39. 931-944 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] V.Gutlyanskii, T.Sugawa: "On Lipschitz continuity of quasiconformal mappings"Report.Univ.Jyvaskyla. 83. 94-108 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sugawa: "A remark on the Ahfors-Lehto univalence criterion"Ann Acad.Sci.Fenn.Ser.Al Math.. 27. 151-161 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi