• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Study on Algorithms for D-Modules.

Research Project

Project/Area Number 13640192
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTokyo Woman's Christian University

Principal Investigator

OAKU Toshinori  Tokyo Woman's Christian University, Professor, 文理学部, 教授 (60152039)

Co-Investigator(Kenkyū-buntansha) SHINOHARA Masahiko  Tokyo Woman's Christian University, Dept. of Mathematics, Professor, 文理学部, 教授 (70086346)
MIYACHI Akihiko  Tokyo Woman's Christian University, Dept. of Mathematics, Professor, 文理学部, 教授 (60107696)
KOBAYASHI Kazuaki  Tokyo Woman's Christian University, Dept. of Mathematics, Professor, 文理学部, 教授 (50031323)
YAMASHITA Shigeho  Tokyo Woman's Christian University, Dept. of Mathematics, Associate Professor, 文理学部, 助教授 (80086347)
OYHAMA Yoshiyuki  Tokyo Woman's Christian University, Dept. of Mathematics, Associate Professor, 文理学部, 教授 (80223981)
Project Period (FY) 2001 – 2003
KeywordsD-module / lihear partial differential equation / algorithm / Groebner base / free resolution / minimal resolution / symbolic computation / division
Research Abstract

1. Collaborating with Professor Nobuki Takayama of Kobe University, I defined the notion of minimal (filtered) free resolution for a module over the homogenized ring of the Weyl algebra (i.e., the ring of differential operators with polynomial coefficients). We also introduced an efficient algorithm for computing a minimal free resolution of a module over the homogenized Weyl algebra. This algorithm was implemented in software Nan.
On the other -hand, using the homogenization of the ring of analytic differential operators with respect to the order filtration, I defined the notion of minimal filtered free resolution for a module over this homogenized ring of analytic differential operators with Professor M. Granger of Angers University, France. We proved that such a minimal filtered free resolution exists uniquely up to isomorphism of complexes. As an application, we introduced a set of numerical invariants of analytic hypersurface singularities.
2. M. Granger and I found a division algorithm in a finite free module over the homogenized ring of analytic differential operators which is generated by operators with polynomial coefficients. This is an extension to D-modules of a celebrated tangent cone algorithm of T. Mora for power series. Takayama implemented this algorithm in Nan. Being able to work with' any monomial ordering compatible with the module-structure, this is one of the most general division algorithms for D-modules.
3. N. Takayama, Y. Shiraki and I studied the method of numerical integration for special functions with parameters by using algorithm for D-modules : We showed that for some examples, this, new method is more efficient than the classical 'method of numerical integration.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] T.Oaku, N.Takayama, H.Tsai: "Polynomial and rational solutions of holonomic systems"Journal of Pure and Applied Algebra. 164. 199-220 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Oaku, N.Takayama: "Minimal free resolutions of homogenized D-modules"Journal of Symbolic Computation. 32. 575-595 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Granger, T.Oaku: "Minimal filtered free resolutions and division algorithms for analytic D-modules"Prepublication du departement de mathematiques, Universite d'Anger. 170. 1-34 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Oaku, Y.Shiraki, N.Takayama: "Algebraic algorithms for D-modules and numerical analysis"Proceedings of the 6^<th> Asian Symposium on Computer Mathematics, World Scientific, Singapore. 23-39 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Granger, T.Oaku: "Minimal filtered free resolutions for analytic D-modules"Journal of Pure and Applied Algebra. 印刷中.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Granger, T.Oaku, N.Takayama: "Tangent cone algorithm for homogenized differential operators"Journal of Symbolic Computation. 印刷中.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大阿久俊則: "D加群と計算数学"朝倉書店. 200 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Oaku, N.Takayama, H.Tsai: "Polynomial and rational solutions of holonomic systems"J. Pure Appi. Algebra. 164. 199-220 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Oaku, N.Takayama: "Minimal free resolutions of homogenized D-modules"J. Symbolic Computation. 32. 575-595 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Granger, T.Oaku: "Minimal free resolutions and division algorithms for analytic D-modules"Prepulications du departement de Mahematiques(Universite d'Angers). 170. 1-34 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Oaku: "Minimal free resolutions of analytic D-modules"Proceedings of the 10th International Conference on Complex Analysis (Silla University). 145-151 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Oaku, Y.Shiraki, N.Takayama: "Algebraic algorithms for D-modules and numerical analysis"Proceedings of the 6th Asian Symposium on Computer Mathematics(World Scientific),Singapore. 23-39 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Granger, T.Oaku: "Minimal filtered free resolutions for analytic D-modules"J. Pure Appi. Algebra. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Granger, T.Oaku, N.Takayama: "Tangent cone algorithm for homogenized differential operators"J. Symbolic Computation. (in press).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi