• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Structure of solutions to the system of equations describing chemotactic aggregation of cellular slime molds

Research Project

Project/Area Number 13640216
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionHIROSHIMA UNIVERSIlY

Principal Investigator

YOSHIDA Kiyoshi  Hiroshima Univ., Faculty of Integrated Arts and Sciences, Prof., 総合科学部, 教授 (80033893)

Co-Investigator(Kenkyū-buntansha) USAMI Hiroyuki  Hiroshima Univ., Faculty of Integrated Arts and Sciences, Ass. Prof., 総合科学部, 助教授 (90192509)
SHIBATA Tetsutaro  Hiroshima Univ., Faculty of Integrated Arts and Sciences, Ass. Prof., 総合科学部, 助教授 (90216010)
NAGAI Toshitaka  Hiroshima Univ., Graduate School of Science, Prof., 大学院・理学研究科, 教授 (40112172)
NAITO Yuki  Kobe Univ., Faculty of Engineering, 工学部, 助教授 (10231458)
Project Period (FY) 2001 – 2003
KeywordsKeller-Segel system / Chirdress-Percus conjecture / global blanch / locations of blow up points / self-similar solution / elliptic equations / Lieuville type theorem / radially symmetrical solution
Research Abstract

Keller and Segel derived the mathematical model describing chemotactic aggregation of cellular slime molds which move toward high cocentrations of chemical substance. So this model is called as the Keller-Segel system. Chirdress and Percus conjectured that there exists a threshold number (8π) such that if an initial value is smaller than 8π, the solutions exist globally in time, on the other hand if an initial value is greater than 8π, the chemotactic collapse can occure. Our objective is to solve this conjecture. We study the Keller-Segel system in R^2 because this system is rarely studied in hole space. Especially we treated the self-similar solution and solved almost positively the Chirdress and Percus conjectuer. For this purpose we encountered several problems and solved these. We enumerate these problems : (1)determine decay order of the self-similar solutions (2)derive the Lieuville type theorem (3)reduction to one elliptic equation from an system of two elliptic equations (4)show the radial symmetry of solutions by using the moving plane method (5)determine the global blanch of solutions (6)solve the Chirdress and Percus conjectuer.

  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] K.Yoshida: "Self-similar solutions of chemotaxic system, Journal of Nonlinear Analysis"Journal of Nonlinear Analysis. 47. 813-824 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Naito, T.Suzuki, K.Yoshida: "Self-similar solutions to a parabolic system modeling chemotaxis"Journal of Differential Equations. 184. 386-421 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nagai: "Global existence and blowup of solutions to a chemotaxis system"Ninlinear Analysis. 47. 777-787 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nagai, R.Syukuinn, M.Umesako: "Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in R^n"Funkcialij Ekvacioj. 46. 383-407 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shibata: "Three-term special asymptotics for nonlinear Strum-Lieuville problems"Nonlinear Differential Equations Appl. 9. 75-90 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Teramoto, H.Usami: "A Lieuville type theorem for semilinear elliptic systems"Pacific J.Math.. 204(1). 247-255 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Naito, H.Usami: "Oscillation criteria for quasilinear elliptic equations"Nonlinear Analysis. 46. 629-652 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yoshida: "Self-similar solutions of chemotaxic system"Journal of Nonlinear Analysis. 47. 813-824 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Naito, T.Suzuki, K.Yoshida: "Self-similar solutions to a parabolic system modeling chemotaxis"J. Duff Equations. 184. 386-342 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nagai: "Global existence and blowup of solutions to a chemotaxis system"Nonlinear Analysis. 47. 777-787 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G.Harada, T.Nagai, T.Senba, T.Suzuki: "Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis"Adv. Differential Equations. 6. 1255-1280 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nagai, R.Syukuinn, M.Umesako: "Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in R^n"Funkcialij Ekvacioj. 46. 383-407 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shibata: "Three-term special asymptotics for nonlinear Strum-Lieuville problems"Nonlinear Duff. Equations Appl. 9. 75-90 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Teramoto, H.Usami: "A Lieuville type theorem for semilinear elliptic systems"Pacific J. Math.. 204. 247-255 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Naito, H.Usami: "Oscillation criteria for quasilinear elliptic equations"Nonlinear Analysis. 46. 629-652 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Futamura, Y.Mizuta: "Lindelof theorems for monotone Sobolev functions"Ann. Acad. Sci. Fenn. Math.. 28. 271-277 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y Mizuta, T.Shimomura: "On semi-fine limits at infinity for Riesz potentials and monotone BLD functions"Potential Analysis.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi