• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Dirichlet space and analysis of harmonic map over the space of Gromov-Hausdorff limit spaces

Research Project

Project/Area Number 13640220
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionYokohama City University

Principal Investigator

KUWAE Kazuhiro  Yokohama City University, Graduate school of integrated Science, Associate Professor, 総合理学研究科, 助教授 (80243814)

Co-Investigator(Kenkyū-buntansha) OTSU Yukio  Kyushu University, Graduate School of Mathematics, Associate Professor, 数理学研究院, 助教授 (80233170)
SHIOYA Takashi  Tohoku University, Graduate School of Mathematics, Associate Professor, 大学院・理学研究科, 助教授 (90235507)
OGURA Yukio  Yokohama City University, faculty of Science and Engineering Saga University, Professor, 理工学部, 教授 (00037847)
MACHIGASHIRA Yoshiroh  Osaka Kyoiku University, Faculty of Education, Associate Professor, 教育学部, 助教授 (00253584)
Project Period (FY) 2001 – 2003
KeywordsDirichlet form / Harmonic map / Variational convergence / Asymtotic relation / Gamma convergence / Mosco convergence / CAT(0)-space / Gromov-Hausdorff convergence / Alexandrov spaces / Calabi s strong maximum principle
Research Abstract

(1)The study of variational convergence over metric measured space : This result is a joint work with Professor Takashi Shioya, who is an associate professor of Graduate School of Mathematical Institute, Tohoku University. We introduce a notion called asymptotic relation over a direct sum of metric spaces, which includes the notion of Gromov-Hausdorff convergence as an example. We discuss several notions of functionals over it, for example, Gamma convergence, Mosco convergence and compact convergence and so on. We give a sufficient condition for the compact convergence of functionals. We also prove a sufficient condition for the convergence of resolvents of energy functionals over CAT(0)-spaces.
(2)The study on the stochastic representation of semigroups obtained from a non-symmetric perturbation : This study is a joint work with Professors P.J.Fitzsimmons, Z.Q.Chen and T.S.Zhang. Consider a symmetric regular Dirichlet form and the associated Hunt process admitting jumps of its sample paths. We consider a non-symmetric perturbation by use of locally square integrable martingale additive functionals and a continuous additive functional of finite variation. We prove that the corresponding semigroup has a stochastic representation in terms of time reverse operator on sample paths.
(3)The study of Calabis type strong maximum principle : We give a stochastic proof of an extension of E.Calabi's strong maximum principle in the framework of strong Feller diffusion processes associated with local regular semi-Dirichlet forms. Our results can be applicable to the Gromov-Hausedorff limit space over a family of compact Riemannian manifolds with uniform lower bounds of Ricci curvature and uniform bounds of diameter.

  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] K.Kuwae, T.Shioya: "Sobolev and Dirichlet spaces between metric spaces"Journal fur die reine und angewandt Mathematik. 555. 39-75 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kuwae, T.Shioya: "Convergence of spectral geometry structures : a functional analytic theory and its applications to spectral"Communications in analysis and geometry. 11. 599-673 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kuwae: "Conservativeness of diffusion processes with drift"Proceedings of the American Mathematical Society. 132. 2743-2751 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.J.Fitzsimmons, K.Kuwae: "Non-symmetric perturbations of symmetric Dirichlet forms"Jour.Funct.Anal. 208. 140-162 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioya: "Behavior of distant maximal geodesics in finitely connected complete two-dimensional Riemannian manifolds, II"Geom.Dedicata. 103. 1-32 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shioya, T.Yamaguchi: "Volume collapsed three-manifolds under a lower curvature bound"Math.Ann.. (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Li, Y.Ogura: "A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric $H_\infty$"Fuzzy Sets and Systems. 135. 391-399 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Li, Y.Ogura, F.N.Proske, M.L.Puri: "Central limit theorems for generalized set-valued random variables"Jour.Math.Anal.Appl.. 285. 250-263 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Matsumoto, Y.Ogura: "Markov or non-Markov property of cM-X processes"Jour.Math.Soc.Japan. 56. 519-540 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shiohama, T.Shioya, M.Tanaka: "The geometry of total curvature on complete open surfaces"Cambridge University Press, Cambridge Tracts in Mathematics, 159. 284 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kuwae, T.Shioya: "Sobolev and Dirichlet spaces between metric spaces"Journal fur die reine und angewandt Mathematik. 555. 39-75 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kuwae, T.Shioya: "Convegence of spectral geometry structures : a functional analytic theory and its applications to spectral"Communications in analysis and geometry. 11. 599-673 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kuwae: "Conservativeness of diffusion processes with drift"Proceedings of he American Mathematical Society. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Fitzsimmons, K.Kuwae: "Non-symmetric perturbations on symmetric Dirichlet forms"Jour.Funct.Anal. 208. 140-162 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shioya: "Behavior of distant maximal geodesics in finitely connected complete two-dimensional Riemannian manifolds, II"Geom.Dedicata. 103. 1-32 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shioya, T.Yamaguchi: "Volume collapsed three-manifolds under a lower curvature bound"Math.Ann.. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Liand, Y.Ogura: "A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric $H_\infty$"Fuzzy Sets and Systems. 135. 391-399 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Liand, Y Ogura, F.N.Proske, M.L.Puri: "Central limit theorems for generalized set-valued random variables"Jour.Math.Anal.Appl.. 285. 250-263 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Matsumoto, Y.Ogura: "Markov or non-Markov property of cM-X processes"Jour.Math.Anal.Appl. 56(to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shiohama, T.Shioya, M.Tanaka: "The geometry of total curvature on complete open Surfaces"Cambridge Tracts in Mathematics(Cambridge University Press, Cambridge). 159. 1-284 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi