• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

High speed algorithm for statistically reliable parametric image in positron emission tomography without continuous arterial blood sampling

Research Project

Project/Area Number 13670977
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Radiation science
Research InstitutionTokyo Metropolitan Institute of Gerontology

Principal Investigator

KIMURA Yuichi  Senior Research Scientist, Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, ポジトロン医学研究部門, 主任研究員 (60205002)

Co-Investigator(Kenkyū-buntansha) ODA Keiichi  Research Assistant, Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, ポジトロン医学研究部門, 研究助手 (70224235)
ISHII Kenji  Research Assistant, Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, ポジトロン医学研究部門, 研究助手 (10231135)
MATANI Ayumu  Associate Professor, Department of Mathematical Engineering and Information Physics, The University Tokyo, 大学院・新領域創成科学研究科, 助教授 (50273842)
Project Period (FY) 2001 – 2002
KeywordsPET / arterial blood sampling / compartment model / kinetic analysis / clustering / independent component analysis / mixture Gaussian model / nuclear medicine
Research Abstract

Voxel-based kinetic analysis in PET can visualize various functionalities in a living tissue. Major drawbacks in formation of an parametic image are bad noise statistics in voxel-based PET data. A large amount of voxels in PET causes a huge calculation time, and it makes formation of a parametric image inpractical. The statistical model-based clustering algorithm of CAKS (Clustering Analysis for Kinetics) is proposed to categorize voxels whose PET data has a similar shape and has similar functionalities. In CAKS, PET data was projected in a feature space and mixture Gaussian model was ulitized. As results, a parametric image can be formed in 30 minutes and the estimates were correspond to the estimates by an ordinal ROI-based estimation. Arterial blood sampling is other problem to apply CAKS in a clinical situation. The spatial distribution of tissue and blood vessel in a brain is distinguishable, and statistical algorithm for a blind separation of independent component analysis was applicable. After specialy designed data preprocessing schemes to emphasize the difference between spatial distribution of vessel and tissue, a proposed algorithm can estimate time course of activity in arterial blood and it corresponded to a measured time activity curve.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Y.Kimura, et al.: "Fast formation of statistically reliable FDG parametric images based on clustering and principal component"Physics in Medicine & Biology. 47. 455-468 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 熨斗康弘, 木村裕一, 石井賢二他: "陽電子断層像パラメトリック画像の高信頼度・高速生成手法-統計的クラスタリングによる糖代謝パラメトリック画像-"信学技報 医用画像処理. MI2001-96. 101-106 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 長縄美香, 眞溪歩, 木村裕一: "独立成分分析の意図的破綻による陽電子断層像からの血漿-放射能曲線抽出"第16回生体・生理工学シンポジウム論文集. 407-410 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M Naganawa, A Matani, Y Kimura: "Extraction of Vessel-related Information From PET Images Without Continuous blood Sampling Using Modified Independent Component Analysis"Proc.on IEEE EMBS01. No.584. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuichi Kimura, Kenji Ishii, Keiichi Oda, et al.: "Imaging Glucose Metabolism of Brain using PET and Clustering Analysis for Kinetics"Second Joint EMBS-EMBS Conference 2002. 5.1.3-5.1.6 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yuichi Kimura, Kenji Ishii, Keiichi Oda, et al.: "Implementation of Statistical Clustering for Voxel-based Kinetic Analysis in PET"Proceeding on IEEE MIC2002. M7-198 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mika Naganawa, Yuichi Kimura, Ayumu Matani: "Modification of ICA for Eatracting Blood Vessel-related Component in Nuclear Medicine : Contrast Function and Nonnegative Constraints"ICA2003. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y. Kimura, and et .al.: "Fast formation of statistically reliable FDG parametric images based on clustering and principal component it"Physics in Medicine &Biology. 47. 455-468 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y Kimura, K Oda, K Ishii, and et. al.: "Formation Of Parametric Images In Positron Emission Tomography Using A Clustering-based Kinetic Analysis With Statistical Clustering"Proc. on IEEE EMBS01. No.543. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M Nkaganawa, A Matani, and Y Kimura: "Extraction of Vessel-related Information >From PET Images Without Continuous Blood Sampling Using Modified Independent Component Analysis"Proc. on IEEE EMBS01. 584. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuichi Kimura, Kenji Ishii, Keiichi Oda, and et. al.: "Imaging Glucose Metabolism of Brain using PET and Clustering Analysis for Kinetics"Second Joint EMBS-EMBS Conference 2002. 5.1.3-6. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yuichi Kimura, Kenji Ishii, Keiichi Oda, and et. al.: "Implementation of Statistical Clustering for Voxel-based Kinetic Analysis in PET"Proceeding on IEEE MIC2002. M7-198 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mika Naganawa, Yuichi Kimura, and Ayumu Matani: "Modification of ICA for Eatracting Blood Vessel-related Component in Nuclear Medicine: Contrast Function and Nonnegative Constraints"ICA2003. (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi