• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Annual Research Report

ツイスター空間と自己双対計量

Research Project

Project/Area Number 13740043
Research InstitutionHiroshima University

Principal Investigator

本多 宣博  広島大学, 大学院・理学研究科, 助手 (60311809)

Keywordsツイスター空間 / 自己双対計量
Research Abstract

昨年度に引き続き、コンパクト単連結多様体上の自己双対計量、およびそれに付随するツイスター空間の複素幾何学的な性質について研究を行った。
昨年度、筆者は3つの複素射影平面の連結和の上の自己双対計量で、自明でないキリング場をもつものの存在を、既知の自己双対計量の同変変形を考えることにより証明したが、本年度はまずこの結果の、自己双対計量の貼り合わせ理論(gluing method)に基づいた別証明を与えた。このような自己双対計量は、存在自体がそれまでこの分野で予想されていなかったため、別証明を与えることは十分意義のあることである。さらに、このツイスター空間の複素幾何学的な構造を研究し、その構造定理(分岐因子の双有理同値類の決定)を与えた。この結果を論文Donaldson-Friedman construction and deformations of a triple of compact complex spaces, II,としてまとめ、海外の専門誌に受理された。
第二に、筆者は4つの複素射影平面の連結和の上の、非代数的なツイスター空間の研究を行い、自明でないキリング場があれば、ツイスター空間上には非特異な楕円曲線のC^★-軌道がただ一つ存在することを示した。さらに、そのようなツイスター空間の存在定理を非常に強い形で与え、Campana-Kreusslerが2000年に提出した問題に対して、より強い形で(群作用つきで)肯定的な解答を与えた。この結果を論文Non-Moishezon twistor spaces of 4CP^2 with non-trivial automorphism groupとしてまとめ、海外の専門誌に投稿した。

  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Honda, Nobuhiro: "Donaldson-Friedman construction and deformations of a triple of compact complex spaces, II"Mathematishe Nachrichten. (掲載予定).

  • [Publications] Honda, Nobuhiro: "On the Structure of Pedersen-Poon twistor spaces"Mathematica Scandinavica. 91. 175-213 (2002)

URL: 

Published: 2004-04-07   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi