• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Annual Research Report

ヒルベルト空間の部分空間の配置の研究

Research Project

Project/Area Number 13874024
Research Category

Grant-in-Aid for Exploratory Research

Research InstitutionKyushu University

Principal Investigator

綿谷 安男  九州大学, 大学院・数理学研究院, 教授 (00175077)

Co-Investigator(Kenkyū-buntansha) 幸崎 秀樹  九州大学, 大学院・数理学研究院, 教授 (20186612)
Keywordsヒルベルト空間 / 直既約な配置 / 4つの部分空間 / 不足指数
Research Abstract

Jonesの指数理論に始まる部分因子環の研究によって、大きな全体としての因子環のなかにはいっている小さな部分因子環の相対的な位置関係を研究することの重要性が確立した。ここでは、土台となるヒルベルト空間自身の幾何学的な位置関係について研究を行なった。無限次元では二つの部分空間の間の角度以外は、ほとんどまともな研究がなされていない。有限次元の時は、Gelfand-Ponomarevにより、4つまでの部分空間の配置については、直既約なものの完全分類がなされている。今年度の研究では手始めとして具体例の構成に挑み、無限次元の4つの部分空間の配置でGelfand-Ponomarevの分類に現れる直既約な配置の帰納的極限になっている直既約な配置をひとつ発見した。作用素論における片側シフトの不変部分空間のBeuringの定理が関係していた。
ヒルベルト空間の部分空間の直既約な配置を分類するためには、数値的な不変量が必要である。有限次元の時はdefect(不足指数)とよばれる量がGelfand-Ponmarevにより導入されているが、その定義式は、無限次元の時は意味を持たない。今回の研究では、作用素論におけるFredholm作用素の指数を使ってdefectの無限次元空間版を導入することに成功した。現在そのdefectの取り得る値を研究中である。

  • Research Products

    (3 results)

All Other

All Publications (3 results)

  • [Publications] T.Kajiwara, C.Pinzari, Y.Watatani: "Hilbert C^*-bimodules and countably generated cuntz-Kriege algebras"J. Operator Theory. 45. 3-18 (2001)

  • [Publications] T.Kajiwara, Y.Watatani: "Hilbert C^*-bimodules and continuous Cuntz-Krieger algebras"J. Math. Soc. Japan. 54. 35-59 (2002)

  • [Publications] M.Izumi, H.Kosaki: "Kac algebras arising from composition of subfactors : general theory and clarification"Memoir Amer. Math. Soc.. (to appear).

URL: 

Published: 2003-04-03   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi