• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Annual Research Report

正標数の体上のモチフィックコホモロジーのホモトピー論的研究

Research Project

Project/Area Number 13F03747
Research InstitutionTokyo Institute of Technology

Principal Investigator

齋藤 秀司  東京工業大学, 理工学研究科, 教授 (50153804)

Co-Investigator(Kenkyū-buntansha) KELLY SHANE  東京工業大学, 理工学研究科, 外国人特別研究員
Project Period (FY) 2013-04-26 – 2016-03-31
Keywordsモチーフ理論 / モチフィックコホモロジー
Outline of Annual Research Achievements

The first result is to introduce a new homology theory for Voevodsky's category
DM(k) of motives over a field k, which generalises the weight homology of Gillet-Soul'e, and the Kato-Suslin weight homology of Geisser. As a consequence of a theorem of Bondarko, we can obtain the following equivalence of categories.
Theorem: The functor from the category of homological functors on DM(k) to the category of additive functors on Chow(k), the category of Chow morives, which is induced by the inclusion of Chow(k) to DM(k) induces an equivalence when restricted to the full subcategory of homological functors H satisfying the condition that H(M(X)[n]) = 0 when X is smooth and projective and n>0. Moreover, this functor recovers and generalises Gillet-Soul'e's weight homology, and the Kato-Suslin weight homology of Geisser.
The second result is to compare motivic homology with 'etale motivic homology, in particular over a finite field. There is a canonical morphism from motivic homology of a motive M to its 'etale motivic homology \\alpha: H^M_i(C) \\to H^{M, et}_i(C).
Theorem: Let p=ch(k). If k is algebraically closed the \\alpha^* is an isomorphism after inverting p. If k is finite, then one can compute the kernel and cokernel of \\alpha in terms of the weight homology of Gillet-Soul'e modulo p-torsion.

Research Progress Status

27年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

27年度が最終年度であるため、記入しない。

  • Research Products

    (8 results)

All 2016 2015 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (2 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Remarks (2 results)

  • [Int'l Joint Research] University of Regensburg(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      University of Regensburg
  • [Journal Article] Reciprocity sheaves, I2016

    • Author(s)
      B. Kahn, S. Saito and T. Yamazaki
    • Journal Title

      Compositio Math.

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Chow group of 0-cycles with modulus and higher dimensional class field theory2016

    • Author(s)
      M. Kerz and S. Saito
    • Journal Title

      Duke Math. J.

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 高次元類体論の現在-非アーベル化への展望と高次元Hasse原理2015

    • Author(s)
      斎藤秀司
    • Journal Title

      日本数学会「数学」

      Volume: 88 Pages: 25--52

    • Peer Reviewed
  • [Presentation] Motives with modulus2016

    • Author(s)
      Shuji Saito
    • Organizer
      International Colloquium on K-theory
    • Place of Presentation
      TIFR,Mumbai, India
    • Year and Date
      2016-01-06 – 2016-01-14
    • Int'l Joint Research / Invited
  • [Presentation] Motives with modulus2015

    • Author(s)
      Shuji Saito
    • Organizer
      AMS algebraic geometry summer institute 2015
    • Place of Presentation
      University of Utah, USA
    • Year and Date
      2015-07-13 – 2015-07-31
    • Int'l Joint Research / Invited
  • [Remarks] 斎藤秀司ホームページ

    • URL

      http://www.lcv.ne.jp/~smaki/ja/index.html

  • [Remarks] Shane Kelly Homepage

    • URL

      http://home.mathematik.uni-freiburg.de/shanekelly/index.html

URL: 

Published: 2016-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi