• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Variational problem and evolution equation of curves and surfaces

Research Project

Project/Area Number 14204004
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

KOISO Norihito  Osaka university, Graduate school of sciences, Professor, 大学院・理学研究科, 教授 (70116028)

Co-Investigator(Kenkyū-buntansha) MABUCHI Toshiki  Osaka university, Graduate school of sciences, Professor, 大学院・理学研究科, 教授 (80116102)
NISHITANI Tatsuo  Osaka university, Graduate school of sciences, Professor, 大学院・理学研究科, 教授 (80127117)
UMEHARA Masaaki  Osaka university, Graduate school of sciences, Professor, 大学院・理学研究科, 教授 (90193945)
ENOKI Ichiro  Osaka university, Graduate school of sciences, Associate Professor, 大学院・理学研究科, 助教授 (20146806)
GOTO Ryuji  Osaka university, Graduate school of sciences, Associate Professor, 大学院・理学研究科, 助教授 (30252571)
Project Period (FY) 2002 – 2005
KeywordsVariational problem / Evolution equation / curve / surface
Research Abstract

The most natural variational problem of closed submanifolds in the 3-euclidean space is the elastic curves in 1-dimensional case, and the constant mean curvature surfaces in 2-dimensional case. These problems are extended naturally to n-euclidean spaces as curves or hyper surfaces. However, we don't have good variational problem of closed mid-dimensional submanifold in n-dimensional euclidean spaces In this research, we defined the following new good variational problem. Consider pairs (S, dS) of minimal submanifold S and its boundary dS. Given the volume of dS, we seek a minimal submanifold S whose volume attains maximum. A solution of this variational problem is called a max-min submanifold. We got the following results.
1. The pair of a totally geodesic submanifold and its constant mean curvature surfaces is max-min submanifold.
2. In particular, a round sphere of any dimensional Euclidean space with any codimension is max-min submanifold.
3. The solution (2) is stable.
4. A pair of a minimal cone C and the intersection of C and the unit sphere is max-min submanifold.
5. We can construct non-homogeneous examples in the torus.
6. Since the variational problem is conditional, two stabilities are defined. Let k be the trace of second fundamental form for outer unit vector. If k is positive, then the solution is A-unstable. If k is negative, then A-stability and B-stability are equivalent.

  • Research Products

    (9 results)

All 2005 2004 2003 2002

All Journal Article (9 results)

  • [Journal Article] On a variational problem for soap films, with gravity and partially free boundary2005

    • Author(s)
      Miyuki Koiso, Bennett Palmer
    • Journal Title

      Journal of the Mathematical Society of Japan 52.7

      Pages: 333-355

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rotational hypersurfaces of periodic mean curvature in the Euclidean spaces2005

    • Author(s)
      K.Kenmotsu
    • Journal Title

      Proceedings of the International Workshop on Integrable systems, Geometry, and Visualization 1

      Pages: 99-106

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On a variational problem for soap films with gravity and partially free boundary2005

    • Author(s)
      Miyuki Koiso, Bennett Palmer
    • Journal Title

      Journal of the Mathematical Society of Japan 52.7

      Pages: 333-355

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rotational hypersurfaces of periodic mean curvature in the Euclidean spaces2005

    • Author(s)
      K.Kenmotsu
    • Journal Title

      Proceedings of the International Workshop on Integrable systems, Geometry, and Visualization

      Pages: 99-106

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The cut loci and the conjugate loci on ellipsoids2004

    • Author(s)
      J.Itoh, K.Kiyohara
    • Journal Title

      Manuscripta Math. 114

      Pages: 247-264

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces2003

    • Author(s)
      A.Amarzaya, Y.Ohnita
    • Journal Title

      Tohoku Math.J. 55

      Pages: 583-610

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Vortex filament equation in a riemannian manifold2003

    • Author(s)
      N.Koiso
    • Journal Title

      Tohoku Math.J. 55

      Pages: 311-320

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An analogue of minimal surface theory in Sl(n,C))2002

    • Author(s)
      M.Kokubu, M.Takahashi, M.Umehara, K.Yamada
    • Journal Title

      Trans.Amer.Math.Soc. 354

      Pages: 1299-1325

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An analogue of minimal surface theory in Sl(n,C)2002

    • Author(s)
      M.Kokubu, M.Takahashi, M.Umehara, K.Yamada
    • Journal Title

      Trans.Amer.Math.Soc. 354

      Pages: 1299-1325

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi