• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Study on Nonlinear Methods for Structure Activity Relationship in Assessment of Health Effects of Chemical Substances

Research Project

Project/Area Number 14209022
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field 広領域
Research InstitutionChiba Institute of Technology

Principal Investigator

TANABE Kazutoshi  Chiba Institute of Technology, Department of Management Information Science, Professor, 社会システム科学部, 教授 (90344134)

Co-Investigator(Kenkyū-buntansha) NAGASHIMA Umpei  National Institute of Advanced Industrial Science and Technology, Research Institute of Computational Sciences, Senior Researcher, 計算科学研究部門, 総括研究員 (90164417)
UCHIMARU Tadafumi  National Institute of Advanced Industrial Science and Technology, Research Institute of Computational Sciences, Chief Researcher, 計算科学研究部門, 主任研究員 (00151895)
TSUZUKI Seiji  National Institute of Advanced Industrial Science and Technology, Research Institute of Computational Sciences, Chief Researcher, 計算科学研究部門, 主任研究員 (10357527)
MATSUMOTO Takatoshi  Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Assistant, 多元物質科学研究所, 助手 (50343041)
NAKATA Munetaka  Tokyo University of Agriculture and Technology, Graduate School of Bio-Applications and Systems Engineering, Professor, 大学院生物システム応用科学研究科, 教授 (40143367)
Project Period (FY) 2002 – 2005
KeywordsStructure Activity Relationship / Neural Network / Carcinogenicity Prediction
Research Abstract

The purpose of this study is to develop a method for predicting the carcinogenicity of diverse chemical substances only from information of their molecular structures on the basis of quantitative structure-activity relationship (QSAR). A three-layered neural network as a nonlinear QSAR model was constructed. For the 454 compounds used in the Predictive Toxicology Challenge (PTC) 2000-2001 contest, 37 kinds of molecular descriptors calculated with MO programs, and the carcinogenicity data were entered into the input and output layers, respectively. The data of 454 compounds was split into training (144 compounds), validation (143) and test (167) sets. To solve the problems such as over-training, over-fitting and local minimum in training the neural network with the error-back-propagation algorithm, various conditions of the network such as the training cycles and neuron numbers of the intermediate layer were optimized. The optimum model showed a correct classification rate close to 74 %, higher than any of the PTC contestants. In order to develop a method with higher predictability, experimental carcinogenicity data on about 400 compounds were collected from various sources such as IARC, NTP and others, and their reliabilities were ranked into nine categories. 70 kinds of molecular descriptors were calculated from their 3D structures for these compounds, and the relationship between carcinogenicity data and those descriptors was analyzed. The performance of the proposed model was assessed by applying the leave-one-out cross validation test. It was found that this method can predict the relative carcinogenicity of diverse chemicals with higher accuracy than those of existing methods.

  • Research Products

    (13 results)

All 2005 2004 2003

All Journal Article (12 results) Book (1 results)

  • [Journal Article] ニューラルネットワークによる多種類の有機化合物の発ガン性の予測2005

    • Author(s)
      田辺和俊, 大森紀人, 小野修一郎, 鈴木孝弘, 松本高利, 長嶋雲兵, 上坂博亨
    • Journal Title

      Journal of Computer Chemistry, Japan 4

      Pages: 89-100

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Development of the Chemical Safety Database System CAESAR2005

    • Author(s)
      TANABE Kazutoshi, OHMORI Norihito, ONO Shuichiro, MATSUMOTO Takatoshi, SUZUKI Takahiro
    • Journal Title

      Journal of Ecotechnology Research 11

      Pages: 111-116

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Prediction of Chemical Carcinogenicity Based on an Evaluated Chemical Safety Database CAESAR2005

    • Author(s)
      Kazutoshi Tanabe, Norihito Ohmori, Shuichiro Ono, Takahiro Suzuki
    • Journal Title

      Journal of Pharmacy and Pharmacology 57

      Pages: S36-S36

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Neural Network Prediction of Carcinogenicity of Diverse Organic Compounds2005

    • Author(s)
      Kazutoshi Tanabe, Norihito Ohmori, Shuichiro Ono, Takahiro Suzuki, Takatoshi Matsumoto, Umpei Nagashima, Hiroyuki Uesaka
    • Journal Title

      Journal of Computer Chemistry, Japan vol.4

      Pages: 89-100

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Development of the Chemical Safety Database System CAESAR2005

    • Author(s)
      TANABE Kazutoshi, OHMORI Norihito, ONO Shuichiro, MTSUMOTO Takatoshi, SUZUKI Takahiro
    • Journal Title

      Journal of Ecotechnology Research vol.11

      Pages: 111-116

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Prediction of Chemical Carcinogenicity Based on an Evaluated Chemical Safety Database CAESAR2005

    • Author(s)
      Kazutoshi Tanabe, Norihito Ohmori, Shuichiro Ono, Takahiro Suzuki
    • Journal Title

      Journal of Pharmacy and Pharmacology Vol.57

      Pages: S36-S36

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Neural Network Prediction of Carcinogenicity of Diverse Organic Compounds2004

    • Author(s)
      K.Tanabe, N.Ohmori, S.Ono, T.Suzuki, T.Matsumoto, H.Uesaka
    • Journal Title

      Journal of Ecotechnology Research 10

      Pages: 188-189

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Categorical Modeling of the Carcinogenicity of Organic Compounds Using Neural Network2004

    • Author(s)
      K.Tanabe, N.Ohmori, S.Ono, T.Suzuki, T.Matsumoto, H.Uesaka
    • Journal Title

      Journal of Pharmacy and Pharmacology 56

      Pages: S58-S59

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Neural Network Prediciton of Carcinogenicity of Diverse Organic Compounds2004

    • Author(s)
      K.Tanabe, N.Ohmori, S.Ono, T.Suzuki, T.Matsumoto, H.Uesaka
    • Journal Title

      Journal of Ecotechnology Research vol.10

      Pages: 188-189

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Categorical Modeling of the Carcinogenicity of Organic Compounds Using Neural Network2004

    • Author(s)
      K.Tanabe, N.Ohmori, S.Ono, T.Suzuki, T.Matsumoto, H.Uesaka
    • Journal Title

      Journal of Pharmacy and Pharmacology vol.56

      Pages: S58-S59

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Neural Network Prediction of Carcinogenicity of Organic Compounds2003

    • Author(s)
      K.Tanabe, N.Ohmori, S.Ono, T.Suzuki, T.Matsumoto, H.Uesaka
    • Journal Title

      Journal of Pharmacy and Pharmacology 55

      Pages: S19-S19

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Neural Network Prediction of Carcinogenicity of Organic Compounds2003

    • Author(s)
      K.Tanabe, N.Ohmori, S.Ono, T.Suzuki, T.Matsumoto, H.Uesaka
    • Journal Title

      Journal of Pharmacy and Pharmacology vol.55

      Pages: S19-S19

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] ゼロから学ぶリスク論2005

    • Author(s)
      田辺和俊
    • Total Pages
      215
    • Publisher
      日本評論社
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi