• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Galois groups and fundamental groups in anabelian geometry

Research Project

Project/Area Number 14340017
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

NAKAMURA Hiroaki  OKAYAMA UNIVERSITY, Graduate School of Natural Science, Department of Mathematics, Professor, 大学院・自然科学研究科, 教授 (60217883)

Co-Investigator(Kenkyū-buntansha) YAMADA Hiro-fumi  OKAYAMA UNIVERSITY, Department of Mathematics, Professor, 大学院・自然科学研究科, 教授 (40192794)
YOSHINO Yuji  OKAYAMA UNIVERSITY, Department of Mathematics, Professor, 大学院・自然科学研究科, 教授 (00135302)
TANAKA Katsumi  OKAYAMA UNIVERSITY, Admission Center, Associate Professor, アドミッションセンター, 助教授 (60207082)
KATSUDA Atsushi  OKAYAMA UNIVERSITY, Department of Mathematics, Associate Professor, 大学院・自然科学研究科, 助教授 (60183779)
HIROKAWA Masao  OKAYAMA UNIVERSITY, Department of Mathematics, Professor, 大学院・自然科学研究科, 教授 (70282788)
Project Period (FY) 2002 – 2005
Keywordsanabelian geometry / outer Galois representation / Teichmueller space / mapping class group / braid group / absolute Galois group / Grothendieck Conjecture / covers of Riemann surfaces
Research Abstract

We studied a measure function that describes the meta-abelian quotient of the monodromy representation associated with the universal family of elliptic curves and its relation with generalized Dedekind sums.
In particular, we showed a congruence formula that describes moment integrals of the measure function along variation of weights. Equations in the Grothendieck-Teichmueller group satisfied by the Galois image were investigated.
Using genus zero non-Galois covers, we found a new type equation. Utilizing the Magnus-Gassner type representation, another new type equation was found to hold in the topological matrix ring in two variables.
In a collaboration with H.Tsunogai, using a characterization of the lemniscate elliptic curve as a Grothendieck dessin, we studied the behavior of Galois parameters of the Grothendieck-Teichmueller group, and described the decomposition of the standard parameter into a product of mutually transposed harmonic parameters in terms of adelic beta functions. In a collaboration with P.Lochak and L.Schneps, we replaced a toplogical path from the standard tangential basepoint to the five cyclic point by a composition of algebraic paths that are transformed by the Galois group with Grothendieck-Teichmueller parameters. Then, we succeeded in interpreting the five cyclic decomposition of the standard parameter in the fundamental group of the moduli spaces of the 5-pointed projective lines. Comparing the method of Ihara-Matsumoto with a paper by Gerritzen-Herrlich-Put about stable compactification of moduli spaces of n-pointed projective lines, we obtained a natural interpretation of tangential base points on those moduli spaces. Through discussions with Wojtkowiak at Nice University, a new direction of investigation and perspectives about 1-adic itereated integrals was obtained.

  • Research Products

    (13 results)

All 2005 2004 2003 2002

All Journal Article (12 results) Book (1 results)

  • [Journal Article] Some classical views on the parameters of the Grothendieck-Teichmueller group2005

    • Author(s)
      H.Nakamura
    • Journal Title

      Progress in Galois Theory Development in Mathematics series(Kluwer Acad. Publ.) 12

      Pages: 123-133

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmueller group2004

    • Author(s)
      P.Lochak
    • Journal Title

      Math. J. Okayama University 46

      Pages: 39-75

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmueller group2004

    • Author(s)
      P.Lochak, H.Nakamura, L.Schneps
    • Journal Title

      Math.J.Okayama University 46

      Pages: 39-75

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Harmonic and equianharmonic equations in the Grothendieck-Teichmuller group2003

    • Author(s)
      H.Nakamura
    • Journal Title

      Forum Math. 15

      Pages: 877-892

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Generalized Rademacher functions and some congruence properties2003

    • Author(s)
      H.Nakamura
    • Journal Title

      Galois theory and modular forms' Developments in Mathematics(Kluwer Academic Publishers) 11

      Pages: 375-394

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Harmonic and equianharmonic equations in the Grothendieck-Teichmuller group2003

    • Author(s)
      H.Nakamura, H.Tsunogai
    • Journal Title

      Forum Math. 15

      Pages: 877-892

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Generalized Rademacher functions and some congruence properties2003

    • Author(s)
      H.Nakamura
    • Journal Title

      Developments in Mathematics (Galois theory and modular forms)(Kluwer Acad.Publ.) Vol.11

      Pages: 375-394

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Some classical views on the parameters of the Grothendieck-Teichmueller group2003

    • Author(s)
      H.Nakamura
    • Journal Title

      Development in Mathematics series (Progress in Galois Theory)(Kluwer Acad.Publ.) Vol.12

      Pages: 123-133

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On explicit formulae for l-adic polylogarithms2002

    • Author(s)
      H.Nakamura
    • Journal Title

      Proc. Symp. Pure Math. 70

      Pages: 285-294

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Limits of Galois representations in fundamental groups along maximal degeneration of marked curves II2002

    • Author(s)
      H.Nakamura
    • Journal Title

      Proc. Symp. Pure Math. 70

      Pages: 43-78

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On explicit formulae for l-adic polylogarithmus2002

    • Author(s)
      H.Nakamura, Z.Wojtkowiak
    • Journal Title

      Proc.Symp.Pure Math. 70

      Pages: 285-294

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Limits of Galois representations in fundamental groups along maximal degeneration of marked curves II2002

    • Author(s)
      H.Nakamura
    • Journal Title

      Proc.Symp.Pure Math. 70

      Pages: 43-78

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Galois theory and modular forms2003

    • Author(s)
      H.Hashimoto et al.(eds)
    • Total Pages
      394
    • Publisher
      Kluwer Acad. Publ.
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi