• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Research on arrangements of hyperplane

Research Project

Project/Area Number 14340018
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

THRAO Hiroaki  Tokyo Metropolitan University, Department of Math, Professor, 理学研究科, 教授 (90119058)

Co-Investigator(Kenkyū-buntansha) OKA Mutsuo  Tokyo Metropolitan University, Department of Math., Professor, 理学研究科, 教授 (40011697)
MARTIN Guest  Tokyo Metropolitan University, Department of Math., Professor, 理学研究科, 教授 (10295470)
TOKUNAGA Hiroo  Tokyo Metropolitan University, Department of Math., Assistant Professor, 理学研究科, 助教授 (30211395)
NAKASHIMA Toru  Tokyo Metropolitan University, Department of Math., Assistant Professor, 理学研究科, 助教授 (20244410)
NAKAMULA Ken  Tokyo Metropolitan University, Department of Math, Professor, 理学研究科, 教授 (80110849)
Project Period (FY) 2002 – 2004
Keywordshyperplane arrangement / hypergeometric integral / local system cohomology / reflection group
Research Abstract

1. In "Moduli space of combinatorially equivalent arrangements of hyperplanes and logarithmic Gauss-Manin connections."(H.Terao), we scrutinized the structure of the boundary divisor of the moduli space of hyperplane arrangements with a fixed number of hyperplanes and studied the Gauss-Manin connection matrix of a local system on each hyperplane arrangement. Especially we proved that every pole is logarithmic.
2. In "Algebras generated by reciprocals of linear forms."(H.Terao), we obtained the explicit formula of the Poincare polynomial of the graded algebra generated by reciprocals of linear forms over a field.
3. In "Multiderivations of Coxeter arrangements."(H.Terao), we showed that the module of vector fields tangent to a Coxeter arrangement with a multiple degree is a free module over a polynomial ring. Furthermore, an explicit basis was obtained.
4. The paper "The Poincard series of the algebra of rational functions which are regular outside hyperplanes."(H.Horiuchi, H.Terao),is a s … More equel to 2. It studies the algebra of rational functions with poles along a hyperplane arrangement. The two-variable Poincare series of the algebra was explicitly determined when a bi-degree is introduced to the algebra.
5. In "Bases of the contact-order filtration of derivations of Coxeter arrangements."(H.Terao), the finite Coxeter arrangement which is a collection of mirrors of reflections of a classical of Coxeter groups. Especially a basis was constructed in a geometric way. Moreover the relationship to the basis constructed by M. Yoshinaga(RIMS) in 2002.
6. The proof of the Edelman-Reiner conjecture by M. Yoshinaga is a marvelous application of the theory of free arrangements and the factorization theorem (H. Terao,1981). In "On the proof of the Edelman-Reiner conjecture" (in Japanese), we gave an overview of the proof and discussed the possible future research.
7. Among various applications of hyperplane arrangements, an application to statistics is actively studied. More concretely, in the ranking theory, which enables us to avoid the Impossibility Theorem by Kenneth Arrow in the social choice theory, a problem concerning the number of possible rankings can be solved by counting the number of chambers in "Hyperplane arrangements and ranking - a contact of mathematics to social science - "(in Japanese). A rigorous proof is found in "Ranking Patterns of the Unfolding Model and Arrangements "(H. Kamiya, R Orlik, A. Takemura, H. Terao). Less

  • Research Products

    (13 results)

All 2004 2003 Other

All Journal Article (13 results)

  • [Journal Article] A construction of stable vector bundles on Calabi-Yau manifolds.2004

    • Author(s)
      T.Nakashima
    • Journal Title

      J.Geom.Phys. 49

      Pages: 224-230

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Arithmetic Clifford's theorem for Hermitian vector bundles.2004

    • Author(s)
      T.Nakashima
    • Journal Title

      Acta Arith. 113

      Pages: 169-174

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A construction of stable vector bundles on Calabi-Yau manifolds,2004

    • Author(s)
      T.Nakashima
    • Journal Title

      J.Geom.Phys. 49

      Pages: 224-230

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Arithmetic Clifford's theorem for Hermitian vector bundles2004

    • Author(s)
      T.Nakashima
    • Journal Title

      Acta Arith 113

      Pages: 169-174

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Ranking Patterns of the Unfolding Model and Arrangements.2003

    • Author(s)
      H.Kamiya, P.Orlik, A.Takemura, H.Terao
    • Journal Title

      Proceedings of the annual meeting of Japan Statisitical Society (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Ranking Patterns of the Unfolding Model and Arrangements.

    • Author(s)
      H.Kamiya, P.Orlik, A.Takemura, H.Terao
    • Journal Title

      Proceedings of the annual meeting of Japan Statisitical Society 印刷中

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements.

    • Author(s)
      H.Terao
    • Journal Title

      Manuscripta Math. 印刷中

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Note on a $2$-dimensional versal $D_8$-cover.

    • Author(s)
      H.Tokunaga
    • Journal Title

      Osaka Math.J. 印刷中

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] $2$-dimensional versal $S_4$-covers and rational elliptic surfaces.

    • Author(s)
      H.Tokunaga
    • Journal Title

      Seminaire et Congres, Society Mathematique de France 印刷中

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements.

    • Author(s)
      H.Terao
    • Journal Title

      to appear in Manuscripta Math.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements.

    • Author(s)
      H.Terao
    • Journal Title

      to appear in Manuscripta Math.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Note on a $2$-dimensional versal $D-8$-cover

    • Author(s)
      H.Tokunaga
    • Journal Title

      to appear in Osaka Math. J.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] $2$-dimensional versal $S_4$-covers and rational elliptic surfaces

    • Author(s)
      H.Tokunaga
    • Journal Title

      Seminaire et Congres, Societe Mathematique de France (to appear in)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi