• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Geometry of Harmonicity

Research Project

Project/Area Number 14340021
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

BANDO Shigetoshi  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40165064)

Co-Investigator(Kenkyū-buntansha) NISHIKAWA Seiki  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60004488)
KENMOTSU Katsuei  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60004404)
TAKAGI Izumi  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40154744)
URAKAWA Hajime  Tohoku University, Graduate School of Information Sciences, Professor, 大学院・情報科学研究科, 教授 (50022679)
SUNADA Toshikazu  Meiji Univ., School of Science and Technology, Professor, 理工学部, 教授 (20022741)
Project Period (FY) 2002 – 2005
KeywordsFutaki invariant / complex Finsler manifold / harmonic maps / energy functional / mean curvature / reaction-diffusion system / heat kernel / crystal lattice
Research Abstract

・Bando studied the locally hyperbolically completeness of almost complex manifolds, and also showed the admissibility condition of Einstein-Hermitian metrics can be replaced by a condition which is easier to check.
・Nishikawa proposed a framework for a differential geometric proof of Hartshorne conjecture, and obtained the fundamental results. He has also conducted the differential geometric study on the foliation structures of CR-manifolds.
・Kenmotsu has extended his study of the periodicity of the surfaces of revolution with periodic mean curvature in the 3-dimensional Euclidean space to the higher dimensional case, and obtained an easier alternate proof of Hsian's result on the classification and construction of the hyper-surfaces of revolution of constant mean curvature.
・Takagi studied the dynamics of reaction-diffusion systems of activator-inhibitor type which model morphogenesis in biology, and investigated how various conditions reflect on the location of spikes in the case of dimension 1.
・Urakawa studied Yang-Mills theory and also conducted a study which relates graph theory and Riemannian geometry.
・Sunada studied the random walks on graphs as an application of the discrete geometric analysis, and established several results on periodic random walks on crystal lattices applying the large deviation theory.
・Horihata studied the initial-boundary value problem on Landau-Lifshitz-Gilbert (LLG) equation which is a model equation of magnetics, and constructed a weak solution. If the dimension is greater than 2, the weak solution converges to a constant in the infinit time provided the boundary value is a constant.

  • Research Products

    (14 results)

All 2006 2005 2003 Other

All Journal Article (12 results) Book (2 results)

  • [Journal Article] Convergence rates to equilibrium of the heat kernels on compact Riemannian manifolds2006

    • Author(s)
      H.Urakawa
    • Journal Title

      Indiana University Mathematical Journal (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Large deviation and the tangent cone at infinity of a crystal lattice2006

    • Author(s)
      M.Kotani, T.Sunada
    • Journal Title

      Math. Z. (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Large deviation and the tangent cone at infinity of a crystal lattice2006

    • Author(s)
      M.Kotani, T.Sunada
    • Journal Title

      Math.Z. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rotational hypersurfaces of periodic mean curvature in the Euclidean spaces2005

    • Author(s)
      K.Kenmotsu
    • Journal Title

      Proceedings of the International Workshop on Integrable systems, Geometry, and Visualization, (edited by Reiko Miyaoka)

      Pages: 99-106

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rotational hypersurfaces of periodic mean curvature in the Euclidean spaces2005

    • Author(s)
      K.Kenmotsu
    • Journal Title

      Proceedings of the International Workshop on Integrable systems, Geometry, and Visualization (edited by Reiko Miyaoka)

      Pages: 99-106

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] An obstruction for Chern class forms to be harmonic

    • Author(s)
      S.Bando
    • Journal Title

      Kodai Math. J. (accepted)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Global solutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria

    • Author(s)
      K.P.Htoo, M.Mimura, I.Takagi
    • Journal Title

      Asymptotic Analysis and Singularity, Advanced Studies in Pure Mathematics (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Determination of the limit sets of trajectories of the Gierer-Meinhardt system without diffusion

    • Author(s)
      W.-M.Ni, K.Suzuki, I.Takagi
    • Journal Title

      Asymptotic Analysis and Singularity, Advanced Studies in Pure Mathematics (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An obstruction for Chem class forms to be harmonic

    • Author(s)
      S.Bando
    • Journal Title

      Kodai Math.J. (accepted)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Globalsolutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria

    • Author(s)
      K.P.Htoo, M.Mimura, I.Takagi
    • Journal Title

      "Asymptotic Analysis and Singularity", Advanced Studies in Pure Mathematics (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Determination of the limit sets of trajectories of the Gierer-Meinhardt system without diffusion

    • Author(s)
      W.-M.Ni, K.Suzuki, I.Takagi
    • Journal Title

      "Asymptotic Analysis and Singularity", Advanced Studies in Pure Mathematics (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Convergence rates to equilibrium of the heat kernels on compact Riemannian manifolds

    • Author(s)
      H.Urakawa
    • Journal Title

      Indiana University Mathematical Journal (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Surfaces with constant mean curvature2003

    • Author(s)
      K.Kenmotsu
    • Total Pages
      142
    • Publisher
      Translations of Mathematical Monographs, vol. 221, American Mathematical Society
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Surfaces with constant mean curvature Translations of Mathematical Monographs, vol.2212003

    • Author(s)
      K.Kenmotsu
    • Total Pages
      142
    • Publisher
      American Mathematical Society
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi