• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Invariants On the Geometric Manifolds with Group Actions

Research Project

Project/Area Number 14340026
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Metropolitan University

Principal Investigator

KAMISHIMA Yoshinobu  Tokyo Metropolitan University., Science, Professor, 理学研究科, 教授 (10125304)

Co-Investigator(Kenkyū-buntansha) IMAI Jun  Tokyo Metropoiltan University, Science, Associate Professor, 理学研究科, 助教授 (70221132)
KAMIYA Shigeyasu  Okayama Science University, Thchnology, Professor, 工学部, 教授 (80122381)
SOMA Teruhiko  Tokyo Denki University, Science and Thchnology, Pofessor, 理工学部, 教授 (50154688)
OHSHIKA Kenichi  Osaka University, Science, Professor, 大学院・理学研究科, 教授 (70183225)
FUJIWARA Kouji  Tohoku University, Science, Associate Professor, 大学院・理学研究科, 助教授 (60229078)
Project Period (FY) 2002 – 2004
KeywordsPseudo-conformal auaternionic structure / Gemetric structure / Quaternionic CRstructure / Pseudo-conformal auaternionic CR structure / Uniformization / Conformal structure / Vanishing / Obstruction
Research Abstract

We have studied a geometric structure on a (4n+3)-dimensional smooth manifold M which is an integrable, nondegenerate codimension 3 subbundle D on M whose fiber supports the structure of 4n-dimensional quaternionic vector space. We call it a psesuo-conformal quterninonic structure. This structure has a refinement which is said to be a psesuo-conformal quterninonic CR structure. The structure is thought of as a generalization of the quaternionic CR structure. In order to study this geometric structure on M, we single out an sp(1)-valued 1-form ω locally on a neighborhood U of M such that Ker ω = D|U. We shall construct the invariants on the pair (M, ω) whose vanishing implies that M is uniformized with respect to a finite dimensional flat quaternionic CR geometry. In fact we have proved the standard psesuo-conformal quterninonic structure on the spahere S^<4n+3> coincides with the standard pseudo-quaternionic CR structure on S^<4n+3> The invariants obtained on a (4n+3)-manifold M have the same formula as the curvature tensor of quaternionic (indefinite) Kaehler manifolds. From this viewpoint, we shall exhibit a quaternionic analogue of Chern-Moser's CR structure. As to the global existence of the 1-form ω on a (4n+3)-manifold M is related to the Pontrjagin classes. We have shown the relation that 2p_1(M)=(n+2)p_1(L). In particular, if 2p_1(M)=0, then there exists a global 1-form co on M which represents a pseudo-conformal quaternionic structure D. As a consequence, there exists a hyperoomplex structure {I, J, K} on D.

  • Research Products

    (12 results)

All 2005 2004 2003

All Journal Article (12 results)

  • [Journal Article] Geometric flow on compact locally conformally Kaehler manifolds2005

    • Author(s)
      神島芳宣
    • Journal Title

      Tohoku Math.Jour. (近刊)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds2005

    • Author(s)
      神島芳宣
    • Journal Title

      Central European J. of Mathematics 2(5)

      Pages: 732-753

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Geometric flow on compact locally conformally Kaehler manifolds2005

    • Author(s)
      Yoshinobu Kamishima (with L. Ornea)
    • Journal Title

      Tohoku Mathematical Journal (to appear in)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Three dimensional Lie group actions on compact (4n+3)-dimensional geometric manifolds2004

    • Author(s)
      神島芳宣
    • Journal Title

      Differential Geometry and its Applications 21

      Pages: 1-26

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Quaternionic and para-quaternionic CR structure on (4n+3) -dimensional manifolds2004

    • Author(s)
      Yoshinobu Kamishima (with D. Alekseevsky)
    • Journal Title

      Central European J. of Mathematics vol.2(5)

      Pages: 732-753

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Three dimensional Lie group actions on compact (4n+3)-dimensional geometric manifolds2004

    • Author(s)
      Yoshinobu Kamishima (with T. Udono)
    • Journal Title

      Differential Geometry and its Applications vol 21

      Pages: 1-26

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Note on realization of cusp cross-sections of complex hyperbolic orbifolds2004

    • Author(s)
      Yoshinobu Kamishima
    • Journal Title

      Surikaiseki Koukyu-roku 1387 (S. Kamiya (ed.), Perspectives of Hyperbolic Spaces II

      Pages: 4-10

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Note on realization of cusp cross-sections of complex hyperbolic orbifolds2003

    • Author(s)
      神島芳宣
    • Journal Title

      数理研講究録, Perspectives of Hyperbolic Spaces II (S.Kamiya (ed.))(数理解析研究所) 1387

      Pages: 4-10

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Bochner flat structures from the viewpoint of spherical, Heisenberg CR-geometry2003

    • Author(s)
      神島芳宣
    • Journal Title

      Geometry and Analysis on CR-manifolds Inst. of Math.Academia Sinica 12

      Pages: 13-19

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] CR manifolds and transformation groups CR manifolds and transformation groups2003

    • Author(s)
      神島芳宣
    • Journal Title

      Selected Topics in CR Geometry, Quaderni di Matematica.(Ed. by S.Dragomir) 1239

      Pages: 175-218

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Bochner flat structures from the viewpoint of spherical, Heisenberg CR-geometry2003

    • Author(s)
      Yoshinobu Kamishima
    • Journal Title

      Geometry and Analysis on CR-manifolds, Inst. of Math. Academia Sinica

      Pages: 13-19

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] CR manifolds and transformation groups2003

    • Author(s)
      Yoshinobu Kamishima
    • Journal Title

      Selected Topics in CR Geometry (Ed. by S. Dragomir), Quaderni di Matematica vol.9

      Pages: 175-218

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi