• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Development of Classification Systems for Large-Scale Pattern Recognition Problems and Its Application

Research Project

Project/Area Number 14380151
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

KUDO Mineichi  Hokkaido Univ., Grad.School of Info.Sci.and Tech., Prof., 大学院・情報科学研究科, 教授 (60205101)

Co-Investigator(Kenkyū-buntansha) MURAI Tetsyua  Hokkaido Univ., Grad.School of Info.Sci.and Tech., Assi.Prof., 大学院・情報科学研究科, 助教授 (90201805)
IMAI Hideyuki  Hokkaido Univ., Grad.School of Info.Sci.and Tech., Assi.Prof., 大学院・情報科学研究科, 助教授 (10213216)
TOYAMA Jun  Hokkaido Univ., Grad.School of Info.Sci.and Tech., Instructer, 大学院・情報科学研究科, 助手 (60197960)
TENMOTO Hiroshi  Kushiro National College of Tech., Dep.of Info.Eng., Assi.Prof., 情報工学科, 助教授 (80321371)
HAYASHI Hiroki  Kushiro National College of Tech., Dep.of Info.Eng., Assi.Prof., 情報工学科, 助教授 (60342440)
Project Period (FY) 2002 – 2005
Keywordspattern recognition / large-scale problem / feature selection / generalization / class number / subclass / super-class / visualization
Research Abstract

In this study, we classified the scaling problems of pattern recognition tasks into three of the following. The results are shown below, respectively.
1.Scaling problem as for data number : We have changed the problem setting from the problem to achieve as high (predictive) performance as possible to the problem to attain as least computational time as possible keeping no large damage in performance. Especially, 1)a fast k-nearest neighbor was invented, and 2)a one-pass algorithm for prototype acquisition was discussed, though they are still under progress.
2.Scaling problem as for dimensionality : We concentrated on "feature selection" which removes low-informative features but keeps the classification performance. Solving this problem usually require a combinatorial examination, so many sub-optimal approaches have been proposed so far. However, they are not satisfactory in time for large-scale problems in the number of original features. In this study, we focused on "classifier-indepen … More dent feature selection" in which only garbage (completely no informative for classification) features are removed. Usual algorithms do "classifier-dependent feature selection." We showed that the former can be made faster than the latter, and a two-stage selection scheme (CIFS+CSFS) is efficient for feature selection.
3.Scaling problem as for cass number : As seen in Kanji-Character recognition, we sometimes have to deal with many categories. The difficulty of classification task increases as the class number increases. We proposed a way to analyze the relationship among classes and grouped some hard-to-classify classes into one "super class." In addition, we investigated a visualization method using a graph representation and a tree representation for making clear the relationship. In the decision tree, we confirmed that the total performance can be increased with feature selection. Last, we suggested that such super-classes and subclasses analysis is useful to capture the individual classification problems. Less

  • Research Products

    (25 results)

All 2005 2004 2003 2002

All Journal Article (25 results)

  • [Journal Article] An Extension of Rough Approximation Quality to Fuzzy Classification.2005

    • Author(s)
      V.N.Huynh et al.
    • Journal Title

      Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science Vol.3641

      Pages: 373-382

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Optimal Division for Feature Selection and Classification.2005

    • Author(s)
      M.Kudo et al.
    • Journal Title

      Proceedings of the Workshop on Feature Selection for Data Mining : Interfacing Machine Learning and Statistics

      Pages: 106-107

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Extraction of Generalized Rules with Automated Attribute Abstraction.2005

    • Author(s)
      Y.Shidara et al.
    • Journal Title

      Foundations of Data Mining and knowledge Discovery, Studies in Computational Intelligence Vol.6

      Pages: 161-170

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Density-and Complexity-Regularization in Gaussian Mixture Bayesian Classifier.2005

    • Author(s)
      H.Tenmoto et al.
    • Journal Title

      Advances in Soft Computing, Soft Computing as Transdisciplinary Science and Technology

      Pages: 391-399

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An Extension of Rough Approximation Quality to Fuzzy Classification.2005

    • Author(s)
      VN.Huynh et al.
    • Journal Title

      Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in.Computer Science Vol.3641

      Pages: 373-382

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Density- and Complexity-Regularization in Gaussian Mixture Bayesian Classifier.2005

    • Author(s)
      H.Tenmoto et al.
    • Journal Title

      Advances in Soft Computing, Soft Computing as Transdisciplinary Science and Technology

      Pages: 391-399

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Classifier-Independent Visualization of Supervised Data Structures using a Graph.2004

    • Author(s)
      H.Tenmoto et al.
    • Journal Title

      Lecture Notes in Computer Science, Advances in Pattern Recognition 3138

      Pages: 1043-1051

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A Nearest Neighbor Method Using Bisectors. Structural.2004

    • Author(s)
      M.Kudo et al.
    • Journal Title

      Syntactic and Statistical Pattern Recognition, Lecture Notes in Computer Science Vol.3138

      Pages: 885-893

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Upper limits for criteria for tests of dimensionality under elliptical populations.2004

    • Author(s)
      Yoshida, K. et al.
    • Journal Title

      Communications in Statistics - Theory and Methods 33(11)

      Pages: 2799-2816

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] ルールの予測精度と興味深さに関する検討2003

    • Author(s)
      設樂洋爾 他
    • Journal Title

      電子情報通信学会技術報告 PRMU2003-76

      Pages: 7-11

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Simple termination conditions for k-nearest neighbor method.2003

    • Author(s)
      M.Kudo et al.
    • Journal Title

      Pattern Recognition Letters 24

      Pages: 1213-1223

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] 包含と排除によるK最近隣法の高速化2003

    • Author(s)
      工藤峰一
    • Journal Title

      電子情報通信学会技術報告 2003-90

      Pages: 91-95

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] クラスに依存した特徴集合を用いた決定木の設計2003

    • Author(s)
      青木 和昭 他
    • Journal Title

      電子情報通信学会論文誌 J86-D-II-8

      Pages: 1156-1165

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Comparison of Low-Dimensional Mapping Techniques Based on Discriminatory Information.2003

    • Author(s)
      Y.Mori et al.
    • Journal Title

      International Journal of Knowledge-Based Intelligent Engineering Systems 7-2

      Pages: 70-77

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Relationship between Rule Accuracy and a Degree of Interest2003

    • Author(s)
      Y.Shidara et al.
    • Journal Title

      Technical Report of IEICE (The Institute of Electronics, Information and Communication Engineers) PRMU2003-76

      Pages: 7-11

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Acceleration of the k-nearest neighbor method using inclusion and exclusion2003

    • Author(s)
      M.Kudo
    • Journal Title

      Technical Report of IEICE (The Institute of Electronics, Information and Communication Engineers) PRMU2003-90

      Pages: 91-95

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Design of Decision Trees Using Class-Dependent Feature Subsets.2003

    • Author(s)
      K.Aoki, et al.
    • Journal Title

      The Transactions of the Institute of Electronics, Information and Communication Engineers J86-D-II-8

      Pages: 1156-1165

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Visualization of Class Structures using Piecewise Linear Classifiers.2002

    • Author(s)
      H.Tenmoto et al.
    • Journal Title

      Advances in Logic, Artificial Intelligence and Robotics 85

      Pages: 104-111

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] New criteria for tests of dimensionality under elliptical populations.2002

    • Author(s)
      K.Yoshida et al.
    • Journal Title

      Journal of the Japan Statistical Society 32(2)

      Pages: 183-192

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Automatic Determination of Size for Feature Selection.2002

    • Author(s)
      M.Kudo
    • Journal Title

      Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics Vol. XVI

      Pages: 305-311

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A Region-Based Algorithm for Classifier-Independent Feature Selection.2002

    • Author(s)
      M.Kudo
    • Journal Title

      Pattern Recognition and String Matching

      Pages: 315-340

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Classifier-Independent Feature Selection Based Non-parametric Discriminant Analysis.2002

    • Author(s)
      N.Abe et al.
    • Journal Title

      Advances in Pattern Recognition, Lecture Notes in Computer Science Vol.2396

      Pages: 470-479

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Choosing the Parameter of Image Restoration Filters by Modified Subspace Information Criterion.2002

    • Author(s)
      A.Tanaka et al.
    • Journal Title

      IEICE Transactions on Fundamentals Vol.E85-A,No.5

      Pages: 1104-1110

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Automatic Determination of Size for Feature Selection.2002

    • Author(s)
      M.Kudo
    • Journal Title

      Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics Vol.XVI

      Pages: 305-311

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Choosing the Parameter of Image Restoration Filters by Modified Subspace Information Criterion.2002

    • Author(s)
      A.Tanaka et al.
    • Journal Title

      IEICE Transactions on Fundamentals Vol.E85-A, No.5

      Pages: 1104-1110

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi