• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Root system construction of a compactification of the moduli space of rational surfaces

Research Project

Project/Area Number 14540023
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

MATSUZAWA Jun-ichi  Kyoto University, Graduate School of Engineering, Lecturer, 工学研究科, 講師 (00212217)

Co-Investigator(Kenkyū-buntansha) ISHII Akira  Hiroshima University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (10252420)
NARUKI Isao  Ritsumeikan University, Graduate School of Science and Engineering, Professor, 理工学部, 教授 (90027376)
Project Period (FY) 2002 – 2005
Keywordscubic surface / moduli / compactification / root system / Weyl group / configuration space
Research Abstract

Matsuzawa and Naruki :
The aim of our research is to study the geometry of surfaces and its moduli from the point of view of Lie group, root systems and Weyl group. We constructed the universal family of marked cubic surfaces from the maximal torus of adjoint group of simple Lie group of type E6. Also we gave defining equation of a cubic surface in terms of root systems. Furthermore we constructed a smooth compactification of the universal family of marked cubic surfaces and gave a Weyl group equivariant mapping to Naruki's compactification of the moduli space of marked cubic surfaces. These constructions enable us to study the geometry of cubic surfaces from the point of view of root systems and Weyl groups. The family of cubic surfaces can be regarded as the configuration space of seven points of projective plane or mojuli space of algebrac curve of genus 3. We found interesting relationship among the geometry of cubic surface, that of algebraic curve of genus 2 and the structure of root system and Weyl groups of type E7, E6, D4.
Ishii :
He generalized the Mckay correspondence for simple singularities to general quotient surface singularities via Hilbert scheme of G-orbits. He studied the case for 3-dimensional quotient singularities when the group is abelian and gave a local coordinates of a crepant resolution of the singularity as the representation moduli of the McKay quiver. He also gave explicit description of the groups of self-equivalences of derived category on the minimal resolutions.

  • Research Products

    (13 results)

All 2005 2004 2002 Other

All Journal Article (11 results) Book (2 results)

  • [Journal Article] Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces2005

    • Author(s)
      A.Ishii, H.uehara
    • Journal Title

      J. Differential Geom. 71

      Pages: 385-435

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces2005

    • Author(s)
      A.Ishii, H.Uehara
    • Journal Title

      J.Differential Geom. 71, no.3

      Pages: 385-435

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient2004

    • Author(s)
      A.Craw, A.Ishii
    • Journal Title

      Duke Math. J. 124

      Pages: 259-307

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Representation moduli of the Mckay quiver for finite subgroups of SL (3, C)2004

    • Author(s)
      A.Ishii
    • Journal Title

      Strings and geometry, VClay Math. Proc., AMS 3

      Pages: 227-237

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Representation moduli of the Mckay quiver for finite subgroups of SL(3,C)2004

    • Author(s)
      A.Ishii
    • Journal Title

      Proceedings of school on Geometry and String Theory, AMS, Strings and geometry, Clay Math.Proc., 3, Amer.Math.Soc., Providence, RI

      Pages: 227-237

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient2004

    • Author(s)
      A.Ishii, A.Craw
    • Journal Title

      Duke Math.J. 124

      Pages: 259-307

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the Mckay correspondence for a finite small subgroup of GL (2, C)2002

    • Author(s)
      A.Ishii
    • Journal Title

      J. Reine Angew, Math. 549

      Pages: 221-233

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Root systems and singularities2002

    • Author(s)
      J.Matsuzawa
    • Journal Title

      Asakura Publishing Co.Ltd.

      Pages: 206

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the McKay correspondence for a finite small subgroup of GL(2,C)2002

    • Author(s)
      A.Ishii
    • Journal Title

      J.Reine Angew.〜Math. 549

      Pages: 221-233

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Representations of the normalizers of maximal tori of simple Lie groups

    • Author(s)
      J.Matsuzawa, M.Takahashi
    • Journal Title

      Tsukuba Journal of Mathematics (掲載予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Representations of the normalizers of maximal tori of simple Lie groups

    • Author(s)
      J.Matsuzawa, M.Takahashi
    • Journal Title

      Tsukuba journal of Mathematics (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] 特異点とルート系2002

    • Author(s)
      松澤淳一
    • Total Pages
      206
    • Publisher
      朝倉書店
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Root systems and singularities2002

    • Author(s)
      J.Matsuzawa
    • Total Pages
      206
    • Publisher
      Asakura Publishing Co.Ltd.
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi