• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Representation Theory of Elliptic Quantum Groups and the Elliptic q-KZB Equation

Research Project

Project/Area Number 14540028
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

EGUCHI Masaaki  Hiroshima University, Fac.of Integrated Arts & Sciences, Assoc.Prof., 総合科学部, 教授 (30037220)

Co-Investigator(Kenkyū-buntansha) TAKEBE Takashi  Ochanomizu Univ., Fac.of Sci., Assoc. Prof., 理学部, 助教授 (60240727)
JIMBO Michio  The Univ.of Tokyo, Graduate School of Math.Sci., Professor, 大学院・数理科学研究科, 教授 (80109082)
KONNO Hitoshi  Hiroshima University, Fac.of Integrated Arts and Sciences, Assoc.Prof., 総合科学部, 助教授 (00291477)
KUMAHARA Keisaku  The University of the Air, Fac.of Liberal Arts, Professor, 教養学部, 教授 (60029486)
MORITA Yoshiyuki  Hiroshima University, Graduate School of Sci., Research Associate, 大学院・理学研究科, 助手 (20243545)
Project Period (FY) 2002 – 2003
KeywordsQuantum Group / Elliptic Function / Conformal Field Theory / Lie algebra / Hopf algebra / Solvable Lattice Model
Research Abstract

1. The Drinfeld realization of the face type eillptic quantum group B_<q,λ>(g)
In the cases g = A^<(1)>_n, A^<(2)>_2, we have realized the L-operator of the face type elliptic quantum group B_<q,λ>(g) in terms of the currents of the elliptic algebra U_<q,p>(g), which is an elliptic deformation of the Drinfeld currents of the affine quantum group U_q(g). Then we have shown the isomorphism U_<q,p>(g) 〓 B_<q,λ>(g) 【cross product】 C{H^^^} as an associative algebra. Here C{H^^^} is a Heisenberg algebra generated mainly by the pair of generators {P_j, Q_j} (j = 1, 【triple bond】, rank g)
2. wee field realization of U_<q,p>(g) and algebraic analysis of the solvable lattice models
The above isomorphism allows us to construct a free field realization of B_<q,λ>(g). For g = A^<(1)>_n, A^<(2)>_2, we lave constructed the level 1 free field realization of U_<q,p>(g), and obtained a realization of both the finite and infinite dimensional highest weight modules of U_<q,p>(g) and the vertex operator of U_<q,p>(g). These vertex operators are the U_<q,p>(g) counterpart of the B_<q,λ>(g)-intertwining operators. We also have identified the spaces of states in the A^<(1)>_n -type and A^<(2)>_2-type RSOS models with the U_<q,p>(g)-modules. The lance vertex operators in these RSOS models have also been identified with the vertex operators of corresponding U_<q,p>(g)
3. Relationship between B_<q,λ>(<sl>^^^^_n) and the deformed W_n-algebra
Extending the known relationship between the vertex operators of U_<q,p>(g) for g = A^<(1)>_1, A^<(2)>_2 acid the generating functions of the deformed W(g^^-)-algebras (deformed Virasoro algebra, in these cases), to the higher rank case p = A^<(1)>_<n-1>, we derived the generating functions of the deformed W_n-algebras by calculating the fusion of the level 1 vertex operators of U_<q,p>(<sl>^^^^_n)

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] T.Kojima et al.: "The elliptic algebra U_{q, p}(\hat{sl}_N)and the Drinfeld realization of the elliptic quantum group B_{q,\lambda}(\hat{sl}_N)"Communications in Mathematical Physics. 239. 405-447 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kojima et al.: "The elliptic algebra U_q{q, p}(\widehat{sl}_N) and the deformation of the W_N algebra"Journal of Physics A. 37. 371-383 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takasaki et al.: "An integrable system on the moduli space of rational functions and its variants"J.Geom.Phys.. 47. 1-20 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] B.Feigin et al.: "Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials."Int.Math.Res.Not.. 18. 1015-1034 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Ebata et al.: "The Cowling-Price theorem for semisimple Lie groups""Hiroshima Math.J.. 32. 337-349 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kojima, H.Konno: "The elliptic algebra U_{q,p}(\widehat{{sl}}_N)$ and the Drinfeld realization of the elliptic quantum group ${\cal B}_{q,\lambda}(\widehat{{sl}}_N)"Comm.Math.Phys.. 239. 405-447 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kojima, H.Konno: "The elliptic algebra $U_{q,p}(\widehat{{sl}}_N)$ and the deformation of the $W_N$ algebra"Journal of Phys.. 37. 371-383 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Ebata, M.Eguchi, S.Koizumi, K.Kumahara: "The Cowling-Price theorem for semisimple Lie groups"Hiroshima Math.J.. 32. 337-349 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] B.Feigin, M.Jimbo, T.Miwa, E.Mukhin: "Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials"Int.Math.Res.Not.. 18. 1015-1034 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] B.Feigin, IVI.Jimbo, T.Miwa, E.Mukhin, Y.Takeyama: "Symmetric polynomials vanishing on the diagonals shifted by roots of unity"Int.Math.Res.Not.. 18. 999-1014 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kenji Kajiwara, Tetsu Masuda, Masatashi Noumi, Yasuhiro Ohta, Yasuhiko Yamada: "$10_E_9 solution to the elliptic Painleve' equation"J.Phys.A. 36. L263-L272 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Morita, Yoshiyuki, Tanisaki, Toshiyuki: "The Radon transform on an exceptional flag manifold"Hiroshima Math.J.. 32. 7-15 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kanehisa Takasaki, Takashi Takebe: "An integrable system on the moduli space of rational functions and its variants"J.Geom.Phys.. 47. 1-20 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Takebe: "A note on the modified KP hierarchy and its (yet another) dispersionless limit"Lett.Math.Phys.. 59. 157-172 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi