• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

The standard realization of crystal lattices and spectra of magnetic transition operators

Research Project

Project/Area Number 14540057
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

KOTANI Motoko  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (50230024)

Co-Investigator(Kenkyū-buntansha) FUJIWARA Koji  Tohoku University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (60229078)
SHIOYA Takashi  Tohoku University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (90235507)
SUNADA Toshikazu  Meiji University, School of Science and Technology, Professor, 理工学部, 教授 (20022741)
OHNITA Yoshihiro  Tokyo Metropolitan University, Faculty of Science, Professor, 大学院・理学研究科, 教授 (90183764)
IZEKI Hiroyasu  Tohoku University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (90244409)
Project Period (FY) 2002 – 2003
Keywordscrystal lattice / magnetic transition operators / central limit theorem
Research Abstract

A crystal lattice is an abelian covering infinite graph of a finite graph. The integer lattices, the triangular lattice, the hexagonal lattice are examples of crystal lattices. We define magnetic transition operators to describe electron transfer on a crystal lattice under periodic magnetic field. The definition is justified by the central limit theorem : Namely, we show that the semigroup generated by the magnetic transition operators converges to the semigroup generated by a magnetic Laplacian of the Euclidean space with the Albanese metric. Magnetic fields on a crystal lattice are defined in terms of the second group cohomology. Next we construct a C^*-algebra associated with the magnetic field and show the magnetic transition operator belongs to the C^*-algebra. By using this, we show the spectra of the magnetic transition operators is a Lipschitz continuous function in magnetic field.
Without magnetic field, electrons behave like random walks. We show large deviation principle holds for random walks on a crystal lattice. By letting lattice spacing smaller, a crystal lattice converges to a finite dimensional vector space with a Banach norm in the Gromov-Hausdorff topology. This Banach norm is characterized in terms of the rate function appearing in the large deviation.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Kotani: "Asymptotic of Large deviation for random walks on a crystal lattice"Contemporary Math.. (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani, T.Sunada: "Spectral geometry of crystal lattice"Contemporary Math.. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani: "Lipschitz continuity of the spectra of the magnetic transition operators on crystal lattice"J.Geom and Phys.. 47. 323-342 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani: "A central limit theorem for magnetic transition operators on a crystal lattice"J.London Math.Soc.. 65. 464-482 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kuwae, T.Shioya: "Sobolev and Dirichlet spaces over maps between metric spaces"J.Reine Angew Math.. 555. 39-75 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Fujiwara: "On the outer automorphism group of a hyperbolic group"Israel J of Math. 131. 277-284 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani: "an asymptotic of the large deviation for random walks on a crystal lattice"Contemporary Math.. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kotani, T.Sunada: "Spectral geometry of crystal lattices"Contemporary Math.. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kotani: "Lipscitz continuity of the spectra of the magnetic transition operators a crystal lattice"J.Geom.Phys.. 47. 323-342 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kotani: "A central limit theorem for magnetic transition operators on a crystal lattice"J.London Math.Soc.. 65. 464-482 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kuwae, T.Shioya: "Sobolev and Dirichlet spaces over maps between metric spaces"J.Reine Angew.Math.. 555. 39-75 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fujiwara: "On the outer automorphism group of a hyperbolic group"Israel J of Math. 131. 27-284 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi