• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Study on the anomaly of Spin^q manifolds

Research Project

Project/Area Number 14540062
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSaitama University

Principal Investigator

NAGASE Masayoshi  Saitama University, Dept.of Math., Professor, 理学部, 教授 (30175509)

Co-Investigator(Kenkyū-buntansha) MIZUTANI Tadayoshi  Saitama University, Dept.of Math., Professor, 理学部, 教授 (20080492)
SAKAMOTO Kunio  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (70089829)
FUKUI Toshizumi  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (90218892)
SAKAI Fumio  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (40036596)
SHIMOKAWA Koya  Saitama Univ., Dept.of Math., Associate Professor, 理学部, 助教授 (60312633)
Project Period (FY) 2002 – 2004
KeywordsSpin / Spin^q / twistor space / chiral anomaly / Dirac operator
Research Abstract

His previous study says that a Spin^q manifold (M,g^M] possesses a canonical CP^1-fibration and its total space (Z,g^z=π^*g^M+g^<C_<P^1>>) called a twistor space has a canonical Spin structure. The structure induces the Dirac operator 【∂!/】 on Z.
(1)The definition of the infinitesimal chiral anomaly and what should be studied : First, its infinitesimal variation δ_X【∂!/】 in the X-direction, where X is a cross-section of a certain adjoint bundle, and its anomaly log det δ_X【∂!/】≡-∂/∂s|_<s=0>^1/(2Γ(s)) f^∞_0 t^s STr(δ_X【∂!/】【∂!/】e^<-t【∂!/】^2>) dt were introduced (by the investigator) from the mathematician's viewpoint. After the analogy of the physical twistor theory and the creating theory of the universe, he considered the operation of collapsing each fiber into one point (returning to the pre-universe), i.e., the operation of taking the adiabatic limit, to produce its essential part denoted lim_<ε→0> log det δ_X【∂!/】_ε. To investigate the limit was the main purpose.
(2)A closer investigation into the Getzler transformation : The so-called Getzler transformation G_ε(【∂!/】_ε)^2 is a useful tool for the study. He showed it very effective to consider it as a composition of two kinds of transformations. By investigating them closely, the study introduced in (1)was quite improved.
(3)Synchronous connection and the Gilkey theory : He introduced a concept of synchronous connection denoted ▽^<g^Z>【symmetry】, which is a little bit simpler than the Levi-Civita one. Accordingly, we define synchronous geodesies, coordinates, etc., and come to the study some invariant polynomials of the curvatures coefficients of ▽^<g^Z>【symmetry】. Unfortunately, it is not yet finished and, to finish it, further invesatigation into typical Spin^q manifolds will be needed.

  • Research Products

    (11 results)

All 2004 2003 2002 Other

All Journal Article (11 results)

  • [Journal Article] Tangle sum and constructible spheres2004

    • Author(s)
      M.Hachimori, K.Shimokawa
    • Journal Title

      J.Knot Theory Ramifications

      Pages: 373-383

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Variational problems of normal curvature tensor and concircular scalar fields2003

    • Author(s)
      K.Sakamoto
    • Journal Title

      Tohoku Math.J. 55

      Pages: 207-254

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On exact Poisoon manifolds of dimension 32002

    • Author(s)
      T.Mizutani
    • Journal Title

      Proc.FOLIATION : GEOMETRY AND DYNAMICS, World Scientific

      Pages: 371-386

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Leibniz algebra associated with foliations2002

    • Author(s)
      Y.Hagiwara, T.Mizutani
    • Journal Title

      Kodai Math.J. 25

      Pages: 151-165

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On Exact Poisson Manifolds of Dimension 32002

    • Author(s)
      T.Mizutani
    • Journal Title

      Proceedings of FOLIATIONS : GEOMETRY AND DYNAMICS(ed.by P.Walczak et al.)(World Scientific)

      Pages: 371-386

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Leibniz Algebras associated with foliations2002

    • Author(s)
      Y.Hagiwara, T.Mizutani
    • Journal Title

      Kodai Math.J. 25

      Pages: 151-165

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Twistor space and the adiabatic expansion

    • Author(s)
      M.Nagase
    • Journal Title

      Preprint

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On Lojasiewicz exponent and Newton polyhedron

    • Author(s)
      T.Fukui
    • Journal Title

      Kodai Math.J. (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Twistor space and the adiabatic expansion

    • Author(s)
      M.Nagase
    • Journal Title

      (preprint)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the Lojasiewicz exponent and Newton polyhedron

    • Author(s)
      T.Fukui
    • Journal Title

      Kodai Math.J. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rational plane curves of type (d,d-2)

    • Author(s)
      F.Sakai, M.Saleem
    • Journal Title

      Saitama Math.J. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi