• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Research on cohomological dimension of topological spaces and one of Coxeter groups

Research Project

Project/Area Number 14540077
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka Kyoiku University

Principal Investigator

KOYAMA Akira  Osaka Kyoiku Univ., Fac.of Education, Professor, 教育学部, 教授 (40116158)

Co-Investigator(Kenkyū-buntansha) WATANABE Tadashi  Yamaguchi Univ., Fac.of Education, Professor, 教育学部, 教授 (10107724)
MACHIGASHIRA Yoshiro  Osaka Kyoiku Univ., Fac.of Education, Associate Professor, 教育学部, 助教授 (00253584)
SUGAHARA Kunio  Osaka Kyoiku Univ., Fac.of Education, Professor, 教育学部, 教授 (20093255)
YOKOI Katsuya  Shimane Univ., Fac.of Sci., Associate Professor, 総合理工学部, 助教授 (90240184)
YAGASAKI Tatsuhiko  Kyoto Inst.Tech., Fac.of Tech., Associate Professor, 工芸学部, 助教授 (40191077)
Project Period (FY) 2002 – 2003
Keywordstopological spaces / dimension / cohomological dimension / Coxeter groups / ideal boundary
Research Abstract

We introduced a new cohomological dimension to the class of separable metric spaces by an inductive way as large inductive dimension. By nd_GX we denote our strong cohomological dimension of a separable metric space X with respect to an abelian group G. The following inequalities are clearly hold : "Ind_GX 【less than or equal】 dim_GX 【less than or equal】 Ind_GX + 1," here dim_G means the usual cohomological dimension with resprect to G. Relate to the fundamental properties we showed the following.
(1) If a separable metric space X is an ANR, Ind_GX = dim_G X for every abelian group G,
(2) If a separable metric space X is finite-dimensional and an abelian group G is countable, Ind_GX = dim_G X,
(3) For every infinite-dimensional compact metric space X with dim_Z X = 2, Ind_ZX = 3,
(4) For a given prime number p, there exists a compact metric space X such that dim_Z_<(p)> X = 2 < 3 = Ind_Z_<(p)> X,
(5) For every separable metric space X and every abelian group G, Ind_G(X × I) = dim_G X + 1,
(6) For every separable metric space X, Ind_QX = dim_Q X, here Q is the ring of all rational sumbers.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] Koyama, Akira, Moran, Manulo: "On classes of maps which preserve finitisticness"Proc.Amer.Math.Soc.. 130(10). 3091-3096 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Boege, M., Dydak, J.R.Jimenez, Koyama, A., Shchepin, E.: "Borsuk-Sieklucki theorem in cohomological dimension"Fund.Math.. 171(3). 213-222 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koyama, Akira, Yokoi, Katsuya: "Cohomological dimension and acyclic resolution"Topology and its Applications. 120(1-2). 175-204 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Itokawa, Y, Machigashira, Y, Shiohama, K: "Generalized Toponogov's theorem for manifolds with radial curvature bouded below"Contemp.Math.. 332. 121-130 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Miyata, Takahisa, Watanabe, Tadashi: "Approximate resolutions and box-counting dimension"Topology and its Applications. 132(1). 49-69 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koyama, Akira, Moron, Manuel M.: "On classes of maps which preserve finitisticness"Proc.Amer.Math.Soc.. 130(10). 3091-3096 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koyama, Akira, M.Boege, M., Dydak, J., Ji-menez, R., Shchepin, E.Borsuk-Siekiucki: "theorem in cohomological dimension"Fund.Math.. 171(3). 213-222 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koyama, Akira, Yokoi, Katsuya: "Cohomological dimension and acyclic resolutions"Topology and its Appl.. 120(1-2). 175-204 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Machigashira, Yoshiro, Itokawa, Yoe, Shiohama, Katsuhiro: "Generalized Toponogov's theorem for manifolds with radial curvature bounded below"ContmMath.. 332. 121-130 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Miyata, Takahisa, Watanabe, Tadashi: "An approximate system approach to box-counting dimension"Topology and its Appl.. 132(1). 49-69 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Miyata, Takahisa, Watanabe, Tadashi: "Approximate resolutions and the fractal category"Glasnik Matematicski. 38. 377-393 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yagasaki, Tatsuhiko: "Embedding spaces and hyperspaces of polyhedra in 2-manifolds"Topology Appl.. 121(3). 247-254 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yagasaki, Tatsuhiko: "The groups of PL and Lipschitz homeomorphisms of noncompact 2-manifolds"Bulletin of the Polish Academy of Sci, Math.. 51(4). 445-466 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Uno, Katsuhiro, Yoshiara, Satoshi: "Dade's conjecture for the simple O'Nan group"J.Algebra. 249. 147-185 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshiara Satoshi: "The radical 2-subgroups of some sporadic simple groups"J.Algebra. 248. 237-264 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi