• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

A study of representations and finite group actions realizing a given fixed point set

Research Project

Project/Area Number 14540084
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKYUSHU UNIVERSITY (2004)
九州芸術工科大学 (2002-2003)

Principal Investigator

SUMI Toshio  Kyushu University, Faculty of Design, Associate Professor, 大学院・芸術工学研究院, 助教授 (50258513)

Co-Investigator(Kenkyū-buntansha) IWASE Norio  Kyushu University, Faculty of Mathematics, Associate Professor, 大学院・数理学研究院, 助教授 (60213287)
Project Period (FY) 2002 – 2004
Keywordsgap modules / gap group / finite group actions
Research Abstract

Let G be a finite group not of prime power order. For a prime p, we denote by O^p(G), called the Dress group of type p, the smallest normal subgroup of G with p-power index. The group G is said to be a gap group if there exists a G-module V such that dim V^<O^2(G)>=0 for any prime p and dim V^P>2dim V^H for any pair (P,H) of subgroups of G with some condition. Note that a Dress subgroup of a gap group G is not of prime power order.
I show that G is a gap group if and only if all subgroups L of G, possessing cyclic quotients L/O^2(G), are gap groups. Now assume that G/O^2(G) is cyclic. As viewing the series of normal groups
G=G_0〓G_1〓G_2〓【triple bond】〓G_k=O^2(G),[G_j,G_<j-1>]=2,
I obtained that G is a gap group if and only if each G_j(0<j<k) is a gap group. I define a subset E_j of 2-elements h of G_j\G_<j-1> by using a form of the centralizer C_G(h). We can easily decide whether the set E_j is empty or not, for example, letting j>1,E_j is not empty if there exists an element of G_j\G_<j-1> not of prime power order. It is a little bit complication to decide whether E_1 is empty. Then I showed that all E_j are nonempty if and only if G is a gap group. Furthermore, I obtained that if G×【triple bond】×G is a gap group,then so is G×G.

  • Research Products

    (6 results)

All 2004 2003 2002

All Journal Article (6 results)

  • [Journal Article] 2-elements outside of the Dress subgroup of type 22004

    • Author(s)
      Toshio Sumi
    • Journal Title

      Transformation Group Theory and Surgery, RIMS Kokyuroku 1393

      Pages: 33-43

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Gap modules for semidirect product groups2004

    • Author(s)
      Toshio Sumi
    • Journal Title

      Kyushu Journal of Mathematics 58

      Pages: 33-58

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Implications of the Ganea condition2004

    • Author(s)
      Norio Iwase, Donald Stanley, Jeffrey Strom
    • Journal Title

      Algebraic and Geometric Topology 4

      Pages: 829-839

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Donald Stanley and Jeffrey Strom, Implications of the Ganea condition2004

    • Author(s)
      Norio Iwase
    • Journal Title

      Algebraic and Geometric Topology 4

      Pages: 829-839

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On finite groups possessing gap modules2003

    • Author(s)
      Toshio Sumi
    • Journal Title

      Transformation Group Theory and Related Topics, RIMS Kokyuroku 1343

      Pages: 99-104

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Nonsolvable general linear groups are gap groups2002

    • Author(s)
      Toshio Sumi
    • Journal Title

      Transformation groups from new points of view, RIMS Kokyuroku 1290

      Pages: 31-41

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi