• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Mathematical Genetics in Post Genome Era

Research Project

Project/Area Number 14540104
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTOKYO INSTITUTE OF TECHNOLOGY

Principal Investigator

MASE Shigeru  Tokyo Institute of Technology, Department of Math.and Comp.Sci., Professor, 大学院・情報理工学研究科, 教授 (70108190)

Co-Investigator(Kenkyū-buntansha) KANAMORI Takafumi  Tokyo Institute of Technology, Department of Math.and Comp.Sci., Research Associate, 大学院・情報理工学研究科, 助手 (60334546)
Project Period (FY) 2002 – 2004
KeywordsBayesian network / LBP algorithm / linkage analysis / MAPP estimator / credit-rating / Cayley tree / phase transition / learning theory
Research Abstract

Stochastic networks with and without are common frameworks in many genetical problems. In particular, They are basis of linkage analysis of family genetic data. The LBP (Loopy Belief Propagation) algorithm is an efficient algorithm for estimating marginal probabilities of nodes of stochastic networks with loops. In order to apply this algorithm to linkage analysis, we studied the following basic theoretical problem :
(1)Taking Cayley trees as examples, convergence and marginal probability recovery problems were studied. Using theoretical and numerical results, we show that the convergence is closely related with the existence of phase transitions. Ising models on Cayley trees have two kind of phase transitions. LBP converges on one phase transition region, but does not converge on another phase transition region. If converged, beliefs may not coincide with true marginal probabilities. Nevertheless, it is observed that states that both give highest values are coincide.
(2)As an application of stochastic networks, we consider an application of credit-rating of companies. It is shown that a naive Bayesian networks can give better predictions than common subjective networks employed by analysts.
(3)With an applications to bioinformatics in mind, Kanamori studied some properties of learning theory. In particular, boosting methods.

  • Research Products

    (13 results)

All 2005 2004 2003 2002 Other

All Journal Article (9 results) Book (4 results)

  • [Journal Article] 統計解析環境Rによる多変量解析,検定,回帰分析及び,可視化2005

    • Author(s)
      間瀬茂, 坂口隆之, 多賀伸幸
    • Journal Title

      人工知能学会誌 v.20, no.1

      Pages: 67-75

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Multivariate Analysis, Tests, Regressions and Visualizations using R(in Japanese)2005

    • Author(s)
      S.Mase, T.Sakaguchi, N.Taga
    • Journal Title

      J.Artificial Inteligence v.20, no.1

      Pages: 67-75

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the threshold method for marked spatial point processes2003

    • Author(s)
      T.Sakaguchi, S.Mase
    • Journal Title

      J.Japan Statist.Soc. v.33, no.1

      Pages: 23-37

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Active Learning algorithm using the maximum weighted log-likelihood estimator2003

    • Author(s)
      Kanamori, T., Shimodaira, H.
    • Journal Title

      Journal of Statistica Planning and Inference 116, 1

      Pages: 149-162

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Active Learning algorithm using the maximum weighted log-likelihood estimator2003

    • Author(s)
      T.Kanamori, H.Shimodaira
    • Journal Title

      Journal of Statistical Planning and Inference v.116, no.1

      Pages: 149-162

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] 高次元乱数と統計学2002

    • Author(s)
      間瀬茂
    • Journal Title

      数学セミナー 2002年1月

      Pages: 49-53

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] High dimensional random numbers and Statistics(in Japanese)2002

    • Author(s)
      S.Mase
    • Journal Title

      Suugaku Seminer 2002-1

      Pages: 49-53

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Information Geometry of U-Boost and Bregman Divergence

    • Author(s)
      Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.
    • Journal Title

      Neural COmputation (To appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Information Geometry of U-Boost and Bregman Divergence

    • Author(s)
      N.Murata, T.Takenouchi, T.Kanamori, S.Eguchi
    • Journal Title

      Neural Computation (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] 工学のためのデータサイエンス入門-フリーな統計環境Rを用いたデータ解析-2004

    • Author(s)
      間瀬茂, 神保雅一, 鎌倉稔成, 金藤浩司
    • Total Pages
      254
    • Publisher
      数理工学社
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Introduction to Data Science-Data Analysis using Free Statistical Environment R-(in Japanese)2004

    • Author(s)
      S.Mase, M.Jimbo, T.Kamakura, K.Kamakura
    • Total Pages
      254
    • Publisher
      Suuri Kougaku Sha
    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] 地球環境データ -衛星リモートセンシング2002

    • Author(s)
      清水邦夫編(項目分担執筆)
    • Total Pages
      230
    • Publisher
      共立出版
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Earth Environment Data-Satellite Remote Sensing(in Japanese)2002

    • Author(s)
      K.Shimizu(ed)
    • Total Pages
      230
    • Publisher
      Kyoritsu Shuppan
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi