• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Analysis on the structure of quasi periodic attractors for nonlinear partial differential equations

Research Project

Project/Area Number 14540182
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKUMAMOTO UNIVERSITY

Principal Investigator

NAITO Koichiro  Kumamoto University, Dept.Eng., Prof., 工学部, 教授 (10164104)

Co-Investigator(Kenkyū-buntansha) KADOTA Noriya  Kumamoto University, Dept.Eng., Lect., 工学部, 講師 (80185884)
MISAWA Masashi  Kumamoto University, Dept.Sci., A-Prof., 理学部, 助教授 (40242672)
OSHIMA Yoichi  Kumamoto University, Dept.Eng., Prof., 工学部, 教授 (20040404)
SADAHIRO Taizou  Kumamoto Pref. University, Dept.Adm., Lect., 総合管理学部, 講師 (00280454)
Project Period (FY) 2002 – 2003
Keywordsnonlinear PDE / quasi periodicity / attractor / fractal dimension / Diophantine approximation / KAM theorem / self-similarity / chaos
Research Abstract

In recent years great efforts have been made to analyze complexity or chaotic behaviors in various fields. In this research we introduced recurrent dimensions of discrete dynamical systems and we have estimated the upper and lower recurrent dimensions of discrete quasi-periodic orbits to analyze complexity of quasi-periodic solutions given by various types of partial differential equaitions. We also proposed the gaps between the upper and the lower recurrent dimensions as the index parameters, which measure unpredictability levels of the orbits. We show that the gaps of recurrent dimensions of quasi-periodic orbits take positive values when the irrational frequencies are weak Liouville numbers with sufficiently large orders of goodness levels of approximation by rational numbers. These results were announced by the head investigator in the international conference NACA2003 ([1], [2]) and will appear in Discr. Conti. Dyn. Systems ([3]).
Calculating the dimensions of the attractors is to measure their level of complexity and randomness. In [5], [6], [7] the co-investigator Y. Oshima proved some related results for randomness, using probability theory. On the other hand, in [8] -[11] the co-investigator M. Misawa have shown various fundamental results on P.D.E., which will play important and essential roles for investigating chaotic behaviors of nonlinear dynamical models.

  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with multiple frequencies : Extended common multiples and Diophantine conditions"Proc.NACA2003. (掲載予定)(印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichiro Naito: "Recurrent Dimensions of Quasi-Periodic Solutions for Nonlinear Evolution Equations II : Gaps of Dimensions and Diophantine Conditions"Discrete and Continuous Dynamical Systems. (掲載予定)(印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Oshima: "Time dependent Dirichlet forms and related stochastic calculus"Inf.Dim.Anal.Quantum Probab.Relat.Topics. (掲載予定)(印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Oshima: "On a construction of diffusion processes on moving domains"Potential Anal.. 20. 1-31 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Misawa: "Existence of classical solution for linear parabolic systems"Comment.Math.Univ.Carolin.. (掲載予定)(印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Misawa: "L^q estimates of gradients for evolutional p-Laplacian systems"Ark.Mat.. (掲載予定)(印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Misawa: "Local Holder regularity of gradients for evolutional p-Laplacian systems"Annali di Matematica. 181. 389-405 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 角田法也, 田中一之: "数学辞典(第4版)「ゲーデルの不完全性定理」"岩波書店. 4 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with multiple frequencies : Extended common multiples and Diophantine conditions"Proc.NACA03. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Classifications of Irrational Numbers and Recurrent Dimensions of Quasi-Periodic Orbits"J.Nonlin.Convex Analy.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Recurrent Dimensions of Quasi-Periodic Solutions for Nonlinear Evolution Equations II : Gaps of Dimensions and Diophantine Conditions"Disc.Conti.Dyn.Sys.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichiro Naito: "Recurrent Dimensions of Quasi-Periodic Orbits with Frequencies Given by Weak Liouville Numbers"Int.J.Math., Game Th. and Alg.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Oshima: "Time dependent Dirichlet forms and related stochastic calculus"Inf.Dim.Anal.Quantum Probab.Relat.Topics. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Oshima: "On a construction of diffusion processes on moving domains"Potential Anal.. 20. 1-31 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Oshima: "On the exceptionality of some semipolar sets of timeinhomogeneous Markov processes"Tohoku Math.J.. 54. 443-449 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Misawa: "Existence of classical solution for linear parabolic systems"Comment.Math.Univ.Carolin.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Misawa: "Lq estimates of gradients for evolutional p-Laplacian systems"Ark.Mat.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Misawa: "Existence for a Cauchy-Dirichlet problem for evolutional p-Laplacian system"Applicationes Math.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Misawa: "Local Holder regularity of gradients for evolutionalp-Laplacian systems"Annali di Matematica. 181. 389-405 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi