• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Study on non-liner partial differential equations by means of besov tpe norms

Research Project

Project/Area Number 14540186
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionCHUO UNIVERSITY

Principal Investigator

MURAMATSU Toshinobu  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (60027365)

Co-Investigator(Kenkyū-buntansha) MITSUMATSU Yoshihiko  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70190725)
MATSUYAMA Yosshio  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70112753)
OHHARU Shinnosuke  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (40063721)
MOCHIZUKI Kiyoshi  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (80026773)
Project Period (FY) 2002 – 2003
KeywordsBesov type norm / Besov type norm / Fourier restiction norm / semilinear Schrodunger equation / Besov type norm / trilinear estimates / KdV equtatiion / initial value problem / well-posednessT
Research Abstract

We defined the Besov type norms which are generalizations of the Fourier restriction norm due to Bourgain, appilled them to the initial value problem of nonlimear partial differential equations, and obtained the following results :
1. The intial value problem for the semilinear Schrodinger equation.
(1)Quadratic nonlimearity case.
For the case whetre the space dimension is 1 or 2 we proved that the intial value problem in the Sobolev space of the critical order is well-posed.
We also obtained the results for the case where the space dimension is greater than 2. The key method is bilinear estimates by meas of Besov type norms.
(2)Cubic nonlinearity case
We proved that the initial value problem is well-posed in the Besov space of critical order when the space is 1, and this result is better than that obtained by the Fourier restriction norm. The key method is trilinear estimates by means of Besov type norms.
(3) We find that the initial value problem is well-posed in the space of square integrable functions when the nonliniarity is the derivative of the squrer of the complex conjugate of the unknown function.
2. The initial value problem for KdV equation.
We proves that the initial value problem is well-posed in the Sobolev space which is very closed to that of order -3/4 (the critical order).

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 村松壽延: "The initial value problem for the 1-D semilinear Schro"dinger equation in Besov spaces"Jornal of the Mathematical Society of Japan. 掲載決定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大春慎之助: "On a class of reaction-diffusion systems describing bone remodeling phenomena"Nihonki Mathematical Journal. 13. 17-32 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 三松佳彦: "Foliations and contact structures on 3-manifolds"Proc.Foliations : Geometry nad Dynamics. 75-125 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 望月 清: "Inverse problem for interior spectral data of the Dirac operators on a fimite interval"Publ.RIMS, Kyoto Univ.. 38. 387-395 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 望月 清: "Inverse scattering for a small nonselfadjoint perturbation of the weve equations"Analysis and Applications by H.G.W。Begehr(ed),Kluwer Academic Publishers. 303-316 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田岡志婦: "Well-posedness of the Cauchy problem for the semilinear Schro"dinger equation with qudratic nonlinearity in Besov spaces"Hokkaido Mathematical J.. 掲載決定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Muramatu, T., Taoka, S.: "The initial value problem for the semilinear euatin in Besov spaces"J. Mathematical Society of Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Matsuura, Y., Oharu, S., Tebbs, D.: "On a class of reaction-diffusion systems describing bone remodeling phenomena"Ihonkai Mathematical J.. Vol.13. 17-32 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mitsumatsu, Y.: "Foliations and contact structures on 3-manifolds"Proc Of Foliation: Geometry and Dynamics (by Jwalczas (ed)) (World Scientific). 75-125 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mochizuki, K., Trooshin, I.: "Inverse problem for interior spectral data of the Dirac opetators on a fimite interval"Publ. RIMS, Kyoto Univ.. Vol.38. 387-395 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mochizuki, K.: "Invers scattering for a small nonselfadjoint perturbation of the wave equations"Annalysis and Applictions by H.G.W.Begehr (ed), (Kiuwer Academic Publishers). 303-316 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Taoka, S.: "Well-posedness of the Cauchy problem for the semilinear Schro"dinger equation with quadratic nonlinearity in B esov spaces"Hokkaido Mathematical J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19   Modified: 2021-10-18  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi