• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

DEPELOPMENTS IN OPERATOR THEORY TOWARDS EVOLUTION EQUATIONS

Research Project

Project/Area Number 14540187
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTOKYO UNIVERSITY OF SCIENCE

Principal Investigator

OKAZAWA Noboru  OKAZAWA,Noboru, 理学部第1部, 教授 (80120179)

Co-Investigator(Kenkyū-buntansha) YOKOTA Tomomi  YOKOTA,Tomomi, 理学部第1部, 助手 (60349826)
Project Period (FY) 2002 – 2003
KeywordsHYPERGEOMETRIC FUNCTIONS OF OPERATORS / FRACTIONAL POWERS OF NONNEGATIVE OPERATORS / COMPLEX GINZBURG-LANDAU EQUATION / INITIAL-BOUNDARY VALUE PROBLEMS / LOCAL LIPSCHITZ CONTINUITY OF NONLINEAR TERM / COMPLEX COEFFICIENTS AND CONITINUITY OF SOLUTION OPERATORS / SEMIGROUPS OF CONTRACTIONS AND LIPSCHITZ OPERATORS / YOSIDA APPROXIMATIONS OF SUBDIFFERENTIAL OPERATORS
Research Abstract

We have considered(1)hypergeometric functions of non-negative operators, and(2)the weliposedness of initial-boundary value problems for the complex Ginzburg-Landau equation.
(1) The Gauss hypergeometric function F(α,β,γ ; -z) is first defined by the power series in the unit disk of the complex plane. If 0 < Re α < Re γ, then an analytic continuation of F outside the unit disk is given by the integral representation which makes sense on C\ (-∞, 1].Replacing the complex variable with a class of closed linear operators, we obtain the corresponding formula for the operator-valued functions. Noting that the power and logarithmic functions ~log z are written down in terms of F(α,β,γ ; -z)and F(α',β',γ' ; -z^<-1>) on C\(-∞, 0], we can define in a unified way the fractional powers and logarithm of a non-negative operator (with inverse) in terms of operator-valued hypergeometric functions.
(2)The existence and uniqueness of global strong solutions to the initial-boundary value problem for the complex Ginzburg-Landau equation with L^2-initial data(smoothing effect on the initial data)is established under a condition on the power of the nonlinear term without any restriction on the complex coefficients.Moreover, we have shown that the solution operator forms a nonlinear semigroup of locally Lipschitz continuous operators on L^2.This improves and extends partially the previous result which asserts that the solution operator forms a nonlinear semigroup of quasi-contractions on L^2 under strict restriction on the complex coefficient of the nonlinear term.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] N.Okazawa: "Gauss hypergeometric functions of operators unifying fractional powers and logarithms"Semigroups of Operators : Theory and Applications. (Proceedings). 209-219 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Yokota, N.Okazawa: "Nonlinear p-heat equations with singular potentials"Semigroups of Operators : Theory and Applications. (Proceedings). 357-367 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Yokota: "Monotonicity and compactness methods applied to the nonlinear Schroedinger and related equations"Nonlinear Analysis and Applications : To V.Lakshraikantham on his 80^<th> Birthday. Volume II. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Takeuchi, T.Yokota: "Global attractors for a class of degenerate diffusion equations"Electronic Journal of Differential Equations. 2003. 1-13 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa, T.Yokota: "Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain"Communications in Mathematical Physics. 245. 105-121 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡沢 登: "非負作用素の超幾何関数"研究集会報告集 数学解析の望ましい姿を探って. 89-98 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Okazawa: "Gauss hypergeometric functions of operators unifying fractional powers and loga-rithms, Semigroups of Operators"Theory and Applications(Rio de Janeiro, September, 2001), Optimization Software, Los Angeles. 209-219 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Yokota, N.Okazawa: "Nonlinear p-heat equations with singular potentials, Semigro ups of Operators"Theory and Applications(Rio de Janeiro, September, 2001), Optimization Software, Los Angeles. 357-367 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Yokota: "Monotonicity and compactness methods applied to the nonlinear Schr6dinger and related equations, Nonlinear Analysis and Applications"To V.Lakshmikantham on his 80th Birthday(Kluwer Academic Publishers). Volume II. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Takeuchi, T.Yokota: "Global attractors for a class of degenerate diffusion equations"Electronic Journal of Differential Equations 2003. No.76. 1-13 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa, T.Yokota: "Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain"Communications in Mathematical Physics. 245,No.1. 105-121 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Okazawa: "Hypergeometric functions of non-negative operators"Towords better shapes of mathematical analysis -a symposium(Fukuoka, 2002), (Kyushu University Press), Fukuoka(in Japanese). 89-98 (2004)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi