2003 Fiscal Year Annual Research Report
Project/Area Number |
14740076
|
Research Institution | Ehime University |
Principal Investigator |
藤田 博司 愛媛大学, 理学部, 助手 (60238582)
|
Keywords | 記述集合論 / Projective Set / 解析数論 / 強制法による独立性証明 |
Research Abstract |
昨年度に引き続き、実数の集合のσイデアルの性質に関連して、Kechrisらの先行する研究を検討した。実数の例外的に小さい集合のクラスの位相構造と非古典論理の束の構造との対応関係を模索する目的で、非古典論理の研究会に参加した(平成15年9月、静岡大学理学部にて)。無理数の計算論的構造をよりよく理解するために、集合論、実数値計算論、二階算術の証明論及びモデル論の研究者を集め、京都大学数理解析研究所の共同利用事業のひとつとして、研究集会「実数の集合論と計算論」を開催した(平成15年10月,京都大学数理解析研究所にて)。この研究集会の報告は京都大学数理解析研究所講究録No.1360として平成16年4月に公刊される予定である。高い階層にある射影集合の性質など、実数の集合に関する強い結果は、通常の集合論の枠内で決定できないものになるため、さまざまな仮説の無矛盾性を評価するためのツールとして、強制法の理論の最新の動向を追求する必要があることがわかった。この方面の研究は現在活発であり進展も早いため、再度、集合論の若手研究者の会議に出席して討議を行った(平成16年1月,北見工業大学工学部情報システム工学科にて)。さらに、KechrisとLouveauの研究で用いられたGandy位相の理論等に関連して、集合論および二階算術のモデル理論の研究者を対象として、理論の詳細について解説と報告を行い、位相空間論の研究者をも交えて討論を行った(平成16年2月,神戸大学大学院自然科学研究科にて)。
|