• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Annual Research Report

様々な重さ半整数の保型形式に関連する数論

Research Project

Project/Area Number 14F04319
Research InstitutionKyushu University

Principal Investigator

金子 昌信  九州大学, 数理学研究院, 教授 (70202017)

Co-Investigator(Kenkyū-buntansha) PURKAIT SOMA  九州大学, 数理学研究院, 外国人特別研究員
Project Period (FY) 2014-04-25 – 2017-03-31
KeywordsHecke algebras / Half integral weight / Metapletic group
Outline of Annual Research Achievements

Let M be odd and square-free. Kohnen gave a newform theory of half-integral weight (k+1/2) forms of level 4M by
defining Kohnen plus new space and proving Hecke isomorphism to the space of newforms of weight 2k, level M. By Niwa,
there is a Hecke isom. between the full space S_k+1/2(Γ_0(4M)) and S_2k(Γ_0(2M)). We look for a subspace of half-integral weight forms of level 4M that maps Hecke isom. onto the integral weight newforms of level 2M. We construct such a subspace and call it the minus space of level 4M. In order to construct the minus space we need certain operators that we obtain from the genuine Hecke algebra described below.
Let G_p be the double cover of SL_2(Q_p) defined by a certain 2-cocycle, K_0(p) be the inverse image of Γ_0(p)Z_p
under the covering map and γ be a genuine central character. We study the Hecke algebra H(G_p//K_0(p), γ) of G_p
corresponding to K_0(p) and γ and give a presentation of it in terms of generators and relations when γ is quadratic. This generalizes Loke-Savin's description of H(G_2//K_0(4), γ). We use Waldspurger's isomorphism between the space of adelic automorphic forms of weight k+1/2, level 4M and S_k+1/2(Γ_0(4M)) to translate the elements in H(G_p//K_0(p), γ) for each prime p dividing 4M to classical operators on S_k+1/2(Γ_0(4M)). We obtain classical operators Q_p with eigenvalues p and -1 and an involution W_p. Let Q’_p be the conjugate of Q_p by W_p. The minus space is the common -1 eigenspace of Q_p and Q'_p for all primes p dividing 2M. This is analogous to our previous results in the integral weight setting.

Research Progress Status

28年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

28年度が最終年度であるため、記入しない。

  • Research Products

    (6 results)

All 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Invited: 2 results)

  • [Int'l Joint Research] Technion-Israel Institute of Technology(Israel)

    • Country Name
      Israel
    • Counterpart Institution
      Technion-Israel Institute of Technology
  • [Journal Article] Hecke algebras, new vectors and new forms on Γ_0 (m)2017

    • Author(s)
      Ehud Moshe Baruch and Soma Purkait
    • Journal Title

      Mathematische Zeitschrift

      Volume: - Pages: 1-29

    • DOI

      10.1007/s00209-017-1842-y

    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Minus space of half-integral weight modular forms2016

    • Author(s)
      Soma Purkait
    • Journal Title

      第10回 福岡数論研究集会 報告集

      Volume: - Pages: 29-43

    • Open Access
  • [Presentation] Newforms of half-integral weight2017

    • Author(s)
      Soma Purkait
    • Organizer
      The 10th Young Mathematicians Conference on Zeta Functions
    • Place of Presentation
      Nagoya University
    • Year and Date
      2017-02-21 – 2017-02-21
    • Invited
  • [Presentation] Minus space of half-integral weight2016

    • Author(s)
      Soma Purkait
    • Organizer
      10th Fukuoka Number Theory Workshop
    • Place of Presentation
      Kyushu University
    • Year and Date
      2016-08-08 – 2016-08-08
  • [Presentation] Hecke algebras, new vectors and newforms2016

    • Author(s)
      Soma Purkait
    • Organizer
      Explicit Methods in Number Theory: Conference in Honour of JohnCremona's 60th Birthday
    • Place of Presentation
      University of Warwick
    • Year and Date
      2016-04-07 – 2016-04-07
    • Invited

URL: 

Published: 2018-01-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi