• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

United theory of existence of global solution and its asymptotic behavior to the nonlinear partial differential equations

Research Project

Project/Area Number 15104001
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Basic analysis
Research InstitutionTohoku University

Principal Investigator

KOZONO Hideo  Tohoku University, Graduate School of Science, Professor (00195728)

Co-Investigator(Kenkyū-buntansha) TAKAGI Izumi  Tohoku University, Graduate School of Science, Professor (40154744)
YANAGIDA Eiji  Tohoku University, Graduate School of Science, Professor (80174548)
OGAWA Takayoshi  Tohoku University, Graduate School of Science, Professor (20224107)
YANAGISAWA Taku  Nara Women's University, Faculty of Science, Associate Professor (30192389)
NAKAMURA Makoto  Tohoku University, Graduate School of Science, Associate Professor (70312634)
Project Period (FY) 2003 – 2007
KeywordsNavier-Stokes Equations / Leray-Hopf Class / Very weak Solutions / Scaling invariance / Turbulent Solutions / Helmholtz-Weyl decomposition / Non-compact boundary / Stokes operator
Research Abstract

1. Constructions of very weak solutions of the Navier-Stokes equations in exterior domains.
We show the unique existence of local very weak solutions to the prescribed non-homogeneous boundary data which belong to the larger class than the usual trace class. Our solutions satisfy the Serrin condition which implies the scaling invariant class.
2. New regularity criterion on weak solutions of the Navier-Stokes equations.
We prove that every turbulent solution which is α-Hoelder continuous in the kinetic energy in the time interval with α>1/2 necessarily regular.
3. Helmholtz-Weyl de composition in unbounded domains with non-compact boundaries of uniformly C^2-class.
Despite of a counter example of valiclity of the Helmholtz-Weyl decomposition in L^r, we introduce the space of sum and intersection of L^r and prove the Helmholtz-Weyl decomposition in such spaces. As an application, we can define the Stokes operator.

  • Research Products

    (7 results)

All 2007

All Journal Article (5 results) (of which Peer Reviewed: 3 results) Book (2 results)

  • [Journal Article] Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data.2007

    • Author(s)
      H. Kozono
    • Journal Title

      J. Math. Soc. Japan 59

      Pages: 127-150

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] On the Helmholtz decomposition in general unbounded domains.2007

    • Author(s)
      H. Kozono
    • Journal Title

      Arch. Math 88

      Pages: 239-248

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Local in time regularity properties of the Navier-Stokes equations.2007

    • Author(s)
      H. Kozono
    • Journal Title

      Indiana Univ. Math. J. 56

      Pages: 2111-2132

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data.2007

    • Author(s)
      H. Kozono
    • Journal Title

      J. Math. Soc. Japan. 59

      Pages: 127-150

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the Helmholtz decomposition in general unboundeddomains.2007

    • Author(s)
      H. Kozono
    • Journal Title

      Arch. Math. 88

      Pages: 239-248

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] これからの非線型偏微分方程式2007

    • Author(s)
      小薗英雄
    • Total Pages
      303
    • Publisher
      日本評論社
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Nonlinear Partial Differential Equations in the Future2007

    • Author(s)
      H. Kozono
    • Total Pages
      303
    • Publisher
      Nippon-Hyoron-sha
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2010-06-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi