• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Study of zeta functions and duality - "infinite sum=infinite product" based on the trace formulas viewpoint

Research Project

Project/Area Number 15340012
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYUSHU UNIVERCITY

Principal Investigator

WAKAYAMA Masato  Kyushu University, Faculty of Mathematics, Professor, 大学院数理学研究院, 教授 (40201149)

Co-Investigator(Kenkyū-buntansha) KANEKO Masanobu  Kyushu University, Faculty of Mathematics, Professor, 大学院数理学研究院, 教授 (70202017)
KAJIWARA Kenji  Kyushu University, Faculty of Mathematics, Associate Professor, 大学院数理学研究院, 助教授 (40268115)
KUROKAWA Nobushige  Tokyo Institute of Technology, Department of Mathematics, Professor, 大学院理工学研究科, 教授 (70114866)
UMEDA Toru  Kyoto University, Department of Mathematics, Associate Professor, 大学院理学研究科, 助教授 (00176728)
Project Period (FY) 2003 – 2006
Keywordsnon-commutative harmonic oscillators / spectral zeta function / elliptic curves / modular forms / Ap'ery numbers / Riemann zeta function / zeta regularized product / q-analogue
Research Abstract

The purpose of this research project was to take a detailed study of zeta functions and duality-"infinite sum = infinite product" based on the trace formulas viewpoint. During the period we obtained the following results :
Study on the spectral zeta function for the non-commutative harmonic oscillators :
1)We show that the differential equation satisfied by the generating function w_2(t) of the Ap'ery like numbers arising from the evaluation of the special values at 2 of the spectral zeta function is the Picard-Fuchs equation for the universal family of elliptic curves equipped with rational 4 torsion. The parameter t of this family can be interpreted as a modular function for a certain congruent subgroup of level 4. (+. K.Kimoto)
2)A higher value analogue is formulated and is shown to be related to some quisi-modular form (+. K.Kimoto).
3)Some estimation for the nth eigen-values of the non-commutative harmonic oscillators are obtained (+ T.Ichinose)
Study on some q-analogue of zeta functions :
1)Contour integral representation of the q-analogue of the Riemann and Hurwitz zeta functions are obtained. The representation is an q-analogue of the one Riemann discovered. As an application, special values of the q-analogue of the zeta function can be easily obtained. (+ Y.Yamasaki).
2)Based on the Jackson integral, some integral representation which is different from the above is obtained (+ K.Mimachi, N.Kurokawa).
Milnor's type multiple gamma and sine functions are formulated in terms of the zeta regularization and their analytic properties are derived. Moreover, the special values are studied. (+ N.Kurokawa, H.Ochiai). Umeda studies some intrinsic relation between special functions and non-commutative invariants, Kaneko develops the study of quisi-modular form and special values, and Kajiwara studies the q-Painleve IV equation from symmetry.

  • Research Products

    (11 results)

All 2007 2006 2002 Other

All Journal Article (11 results)

  • [Journal Article] Elliptic curves arising from the spectral zeta functions for non-commutative harmonic oscillators and Γ_0(4)-modular forms2007

    • Author(s)
      K.Kimoto, M.Wakayama
    • Journal Title

      Proceedings of the conference on L-functions, (World Scientific)

      Pages: 201-218

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Milnor's multiple gamma functions2007

    • Author(s)
      T.Ichinose, M.Wakayama
    • Journal Title

      Reports on Mathematical Physics (in press)(to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Apery-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators2006

    • Author(s)
      K.Kimoto, M.Wakayama
    • Journal Title

      Kyushu J. Mathematics 60

      Pages: 383-404

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Algebraicity and transcendency of basic special values of Shintani's double sine functions2006

    • Author(s)
      N.Kurokawa, M.Wakayama
    • Journal Title

      Proc. Edinburgh Mathematical Society 49

      Pages: 361-366

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Milnor's multiple gamma functions2006

    • Author(s)
      N.Kurokawa, H.Ochiai, M.Wakayama
    • Journal Title

      J. Ramanujan Mathematical Society 21

      Pages: 153-167

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Ap\'ery-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators2006

    • Author(s)
      K.Kimoto, M.Wakayama
    • Journal Title

      Kyushu J.Mathematics 60

      Pages: 383-404

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Algebraicity and transcendency of basic special values of Shintani's double sine functions2006

    • Author(s)
      N.Kurokawa, M.Wakayama
    • Journal Title

      Proc.Edinburgh Mathematical Society 49

      Pages: 361-366

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Milnor's multiple gamma functions2006

    • Author(s)
      N.Kurokawa, H.Ochiai, M.Wakayama
    • Journal Title

      J.Ramanujan Mathematical Society 21

      Pages: 153-167

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Integral representations of q-analogues of the Hurwitz zeta function2002

    • Author(s)
      Y.Yamasaki, M.Wakayama
    • Journal Title

      Monatshefte fur Mathematuk 49

      Pages: 141-154

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Integral representations of q-analogues of the Hurwitz zeta function2002

    • Author(s)
      Y.Yamasaki, M.Wakayama
    • Journal Title

      Monatshefte f"ur Mathemat"uk 49

      Pages: 141-154

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Milnor's multiple gamma functions

    • Author(s)
      T.Ichinose, M.Wakayama
    • Journal Title

      Reports on Mathematical Physics (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi