• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Construction of Generic Polynomials in Galois Theory and application to Number Theory

Research Project

Project/Area Number 15340015
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

HASHIMOTO Kiichiro  Waseda University, Faculty of Science and Engineering, Professor, 理工学術院, 教授 (90143370)

Co-Investigator(Kenkyū-buntansha) KOMATSU Keiichi  Waseda University, Faculty of Science and Engineering, Professor, 理工学術院, 教授 (80092550)
MURAKAMI Jun  Waseda University, Faculty of Science and Engineering, Professor, 理工学術院, 教授 (90157751)
MIYAKE Katsuya  Waseda University, Faculty of Science and Engineering, Professor, 理工学術院, 客員教授 (20023632)
FUKUDA Takashi  Ninon University, Faculty of Engineering, for Production, Associate Professor, 生産工学部, 助教授 (00181272)
TSUNOGAI Hiroshi  Sophia University, Faculty of Science and Engineering, Assistant Professor, 理工学部, 講師 (20267412)
Project Period (FY) 2003 – 2005
KeywordsGalois Theory / Galois Group / Inverse Galois Problems / Generic Polynomial / Noether's Problem / Cyclic Polynomial / Meta abelian Group / Gaussian Periods
Research Abstract

Thanks to the current Grant-in-Aid, we were able to organize seven research workshops inviting the most active mathematicians on this field, through which we had many discussions on our subjects.
This enabled us to make a considerable developments along our reseach project on Galois theory.
As for the main theme of constructing generic polynomials with given finite groups over Q, our first result is the construction of concrete and simple families of quintic polynomials with two parameters for each of the five transitive permutation groups of degree 5. As a remarkable application we have established the proof of the genericity of the famous family of A_5 polynomials of degree 6 found by A.Bumer, in connection with algebraic curves of genus two whose Jacobian have real multiplication of discriminant 5.
Our second result is concerned with the Noethers' Problem for the meta abelian groups of exponent 8 which are subgroups of the affine transformation group over Z/8Z. We have proved the affirmative answer for the linear representation of degree 4 for each of them, in contrast with the negative answer for cyclic group of order 8. As a biproduct of this result, we obtained a simple criterion for a cyclic extension L/K of degree 4 to be embedded into a cyclic extension of degree 8.

  • Research Products

    (10 results)

All 2005 2004

All Journal Article (10 results)

  • [Journal Article] Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Tokyo. J. Math. 28・1

      Pages: 13-32

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] 超楕円曲線と mod 2 ガロア表現について2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      数理解析研究所講究録 1451

      Pages: 285-294

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Math. Comp. 74

      Pages: 1519-1530

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Type numbers and linear relations of theta series for some general orders of quaternion algebras2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Proceedings of the Conference in Memory of Tsuneo Arakawa. World Scientific

      Pages: 107-129

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Tokyo.J.Math. 28-1

      Pages: 13-32

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Hyperelliptic curves and mod 2 Galois representations2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Proceedings of the RIMS Conference 1451

      Pages: 285-294

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Math.Comp. 74

      Pages: 1519-1530

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Type numbers and linear relations Of theta series for some general orders of quaternion algebras2005

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Proceedings of the Conference in Memory of Tsuneo Arakawa, World Scientific

      Pages: 107-129

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Noether's Problem and Q-generic Polynomial for the affine transformation group Z/8Z and its subgroups of exponent 82004

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      早稲田大学整数論研究集会報告 9

      Pages: 13-26

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Noether' s Problem and Q-generic Polynomial for the affine transformation group Z/8Z and its subgroups of exponent 82004

    • Author(s)
      Kiichiro Hashimoto
    • Journal Title

      Proceedings of the Conference on Number Theory in Waseda University 9

      Pages: 13-26

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi