• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Study of moduli spaces of projective varieties of general type

Research Project

Project/Area Number 15340018
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSophia University

Principal Investigator

TSUJI Hajime  Sophia University, Department of Mathematics, Professor, 理工学部, 教授 (30172000)

Co-Investigator(Kenkyū-buntansha) FUTAKI Akito  Tokyo Institute of Technology, Department of Mathematics, Professor, 理工学部, 教授 (90143247)
ISHII Shihoko  Tokyo Institute of Technology, Department of Mathemtaics, Professor, 理工学部, 教授 (60202933)
Project Period (FY) 2003 – 2006
Keywordspluricanonical systems / varieties of general type / Kaehler-Einstein metrics / closed positive current / singular hermitian metrics / analytic Zariski decomposition / Bergman kernel / plurisubharmonicity
Research Abstract

I obtain that there exists a positive number m(n) dependeing only on n such that for every smooth projective n-fold of general type and for every positive integer m> m(n), mK_{X} gives a birtaional embedding of X into a projective space.
This is a furthere generalization of the result of E. Bombieri for surfaces of general type.
Next I proved that the for a smooth projective family f X longrightarrow S and a semipositive singular hermitian line bundle L,
The adjoint bundle K {X/S} + L has a Bergman kernel which is logarithmically plurisubharmonic on $X$.
Moreover the curvature current extends to the whole completion as a closed positive current.
3rd I have proven a new construction of Kaehler-Einstein metric with negative Ricci curvature. This enables us to study the variation of Kaehler-Einstein volume form on a smooth projective family of canonically polarized varieties.
As a consequence I have obtained the plurisubharmonic variation of the Kaehler-Einstein volume form on a smooth projective Family.
4^<th>. I have constructed a canonical singular hermitian metric on the canonical bundle of any nonuniruled projective varieties with semipositive curvature current. And minimal singularities (AZD).
This enables us to obtain a very short proof of the invariance of plurigenera.

  • Research Products

    (10 results)

All 2007 2006 2005 2004

All Journal Article (10 results)

  • [Journal Article] Pluricanonical systems of projective varieties of general type II2007

    • Author(s)
      H.Tsuji
    • Journal Title

      Osaka Journal of Mathematics 44-3(未定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Pluricanonical systems of projective varieties of general type II2007

    • Author(s)
      H.Tsuji
    • Journal Title

      Osaka Journal of Mathematics 44-3(to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Pluricanonical systems of projective varieties of general type I2006

    • Author(s)
      H.Tsuji
    • Journal Title

      Osaka Journal of Mathematics 43-4

      Pages: 323-352

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The local Nash problems on arc families of singularities2006

    • Author(s)
      S.Ishii
    • Journal Title

      Ann. of Institute Fourier 56

      Pages: 1207-1214

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Harmonic total Chern forms and stability2006

    • Author(s)
      A.Futaki
    • Journal Title

      Kodai Math. Journal 29-3

      Pages: 346-369

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Harmonic total Chern forms and stabiblity2006

    • Author(s)
      A.Futaki
    • Journal Title

      Kodai Mathematial Journal 29-3

      Pages: 346-369

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Arcs, valuation and the Nash maps2005

    • Author(s)
      S.Ishii
    • Journal Title

      J. reine angewande Math. 588

      Pages: 71-92

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Arcs, valuation and Nash maps2005

    • Author(s)
      S.Ishii
    • Journal Title

      J.reine angewande Math 588

      Pages: 71-92

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Subadunction theorems for pluricanonical divisors2004

    • Author(s)
      H.Tsuji
    • Journal Title

      Advanced study in pure Math. 42

      Pages: 313-318

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Subadunction theorems for pluricanonical divisors2004

    • Author(s)
      H.Tsuji
    • Journal Title

      Advanced study in pure Math 42

      Pages: 313-318

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi