• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

The global behavior of curves and surfaces in space forms

Research Project

Project/Area Number 15340024
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

UMEHARA Masaaki  Osaka Univ., Graduate School of Science, Professor, 理学研究科, 教授 (90193945)

Co-Investigator(Kenkyū-buntansha) KOISO Norihito  Osaka Univ., Graduate School of Science, Professor, 理学研究科, 教授 (70116028)
YAMADA Kotaro  Kyushu Univ., Faculty of Mathematics, Professor, 大学院数理学研究院, 教授 (10221657)
ROSSMAN Wayne F  Kobe Univ., Faculty of Science, Associate Professor, 理学部, 助教授 (50284485)
KOKUBU Masatoshi  Tokyo Denki Univ., School of Engineering, Associate Professor, 工学部, 助教授 (50287439)
INOGUCHI Junichi  Utsnomiya Univ., Department of Math.Education, Associate Professor, 教育学部, 助教授 (40309886)
Project Period (FY) 2003 – 2006
KeywordsGaussian curvature / Singular point / Inflection point / Wave front
Research Abstract

We get the following results :
1.A maximal surface which is given by the real part of holomorphic isotropic immersion into C^3 is called a maxface. As a joint work with K.Yamada, the head investigator Umehara gave a Weierstrass-type representation formula for maxfaces, and gave an Osserman-type ineqality for complete maxfaces. The equality holds if and only if all ends of the surfaces are properly embedded. Moreover, as a joint work with K.Saji, S.Fujimori, and K.Yamada, the head investigator Umehara gave a criterion for the cuspidal cross cap, and showed that generic singular points for maxfaces consists of cuspidal edge, swallowtail and cuspidal cross cap.
2.As a joint work with K.Saji and K.Yamada, the head investigator Umehara studied the behavior of Gaussian curvature near the cuspidal edge and the swallowtail. In particular, the new geometric invariant on cuspidal edges called the singular curvature is introduced, and show that the integration of the singular curvature on the singular set is closely related to the Euler number of the surface.
3.A curve γ in the real projective plane is called anti-convex if for each point p on the curve, there exists a line passing through the point which does not meet y other than p. As a joint work with G.Thorbergsson, the head investigator Umehara studied the inflection points on anti-convex curves, and showed that the number of inflection points I and the number of the independent double tangents D satisfies the relation I-2D=3.

  • Research Products

    (12 results)

All 2007 2006 2005 2004

All Journal Article (12 results)

  • [Journal Article] Flat fronts in hyperbolic 3-space and their caustics2007

    • Author(s)
      M.Kokubu, W.Rossman, M.Umehara, K.Yamada
    • Journal Title

      J. Math. Soc. Japan 59

      Pages: 265-299

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Flat fronts in hyperbolic 3-space and their caustics2007

    • Author(s)
      M.Kokubu, et al.
    • Journal Title

      J.Math.Soc.Japan 59

      Pages: 265-299

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Maximal surfaces with singularities in Mikowski space2006

    • Author(s)
      M.Umehara, K.Yamada
    • Journal Title

      Hokkaido Math. J. 35

      Pages: 13-40

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Maximal surfaces with singularities in Mikowski space2006

    • Author(s)
      M.Umehara, et al.
    • Journal Title

      Hokkaido Math.J. 35

      Pages: 13-40

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Singularities of flat fronts in hyperbolic 3-space2005

    • Author(s)
      M.Kokubu, W.Rossman, M.Umehara, K.Yamada
    • Journal Title

      Pacific J. Math. 221

      Pages: 303-351

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Singularities of flat fronts in hyperbolic 3-space2005

    • Author(s)
      M.Kokubu, et al.
    • Journal Title

      Pacific J.Math. 221

      Pages: 303-351

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Flat fronts in hyperbolic 3-space2004

    • Author(s)
      M.Kokubu, M.Umehara, K.Yamada
    • Journal Title

      Pacific J. Math. 216

      Pages: 149-175

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A global theory of flexes of periodic functions2004

    • Author(s)
      G.Thorbergsson, M.Umehara
    • Journal Title

      Nagoya Math. J. 173

      Pages: 85-138

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An analogue of the UP-iteration for constant mean curvature one surfaces in Hyperbolic 3-space2004

    • Author(s)
      C.McCune, M.Umehara
    • Journal Title

      Diff. Geom. and its Appl. 20

      Pages: 197-207

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Flat fronts in hyperbolic 3-space2004

    • Author(s)
      M.Kokubu, et al.
    • Journal Title

      Pacific J.Math. 216

      Pages: 149-175

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A global theory of flexes of periodic functions2004

    • Author(s)
      G.Thorbergsson, et al.
    • Journal Title

      Nagoya Math.J. 173

      Pages: 85-138

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] An analogue of the UP-iteration for constant mean curvature one surfaces in Hyperbolic 3-space2004

    • Author(s)
      C.McCune, et al.
    • Journal Title

      Diff.Geom. and its Appl. 20

      Pages: 197-207

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi