• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Mathematical analysis for nonlinear partial differential equations with singular solutions

Research Project

Project/Area Number 15340041
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKanazawa University

Principal Investigator

OMATA Seiro  Kanazawa univ., Dept. of Natural Sciences, Prof., 自然科学研究科, 教授 (20214223)

Co-Investigator(Kenkyū-buntansha) MIYAKAWA Tetsuro  Kanazawa univ. Dept. of Natural Sciences, Prof., 自然科学研究科, 教授 (10033929)
JIMBO Shuichi  Hokkaido Univ. Dept. of Mathematics, Prof., 大学院・理学研究科, 教授 (80201565)
WEISS Georg  The Univ. of Tokyo. Dept. of Mathematical Science, Associate Prof., 大学院・数理科学研究科, 助教授 (30282817)
KIMURA Masato  Kyushu Univ. Dept. of Mathematics, Associate Prof., 大学院・数理学研究院, 助教授 (70263358)
KIKUCHI Koji  Shizuoka Univ. Dept. of Engneering, Professor, 工学部, 教授 (50195202)
Project Period (FY) 2003 – 2005
Keywordsvariational problem / nonlinear PDEs / singularity / numerical analysis / minimizing method / free boundary problem
Research Abstract

The aim of this research was to solve nonlinear Partial Differential Equations whose solution is expected to have singularities depending on time. The candidates of singularities are defects in harmonic mapping, vortex in Ginzburg-Landau problem and free boundaries.
We have solved the following problems;
(1)On a Soap film vibration with free boundary, we have established the method to treat wave type free boundary problems
(2)We developed a numerical method via the discrete Mores flow for volume constraint conditions
(3)We constructed a weak solution to a hyperbolic equation with volume constraint
(4)We constructed a weak solution to a parabolic equation with volume constraint and showing Hoelder continuity of the
solution
Moreover we have developed solvers for parallel machine with minimizing algorithm via the discrete Morese flows. This works very well especially for volume constraint problems. This is also very nice for a weak connected parallel machines, because it uses direct method of variational principle.
Finally, we would like to express pur special thanks to all participants of this project.

  • Research Products

    (13 results)

All 2006 2005 2004 2003 Other

All Journal Article (13 results)

  • [Journal Article] Construction of approximate solution to a hyperbolic free boundary problem with volume constraint and its numerical computation2006

    • Author(s)
      T.Yamazaki, S.Omata et.el.
    • Journal Title

      Adv. Math. Sci. Appl. 16

      Pages: 57-67

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Construction of approximate solution to a hyperbolic free boundary problem with volume constraint and its numerical computation2006

    • Author(s)
      T.Yamazaki, S.Omata, K.Svadlenka, K.Ohara
    • Journal Title

      Adv. Math. Sci. Appl. 16, 1

      Pages: 57-67

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Numericalsolution of film vibration with obstacle2006

    • Author(s)
      H.Yoshiuchi, S.Omata, K.Svadlenka, K.Ohara
    • Journal Title

      Adv. Math. Sci. Appl. 16, 1

      Pages: 33-43

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A wave equation in the curl-free space related to asmectics liquid crystal2005

    • Author(s)
      S.Omata
    • Journal Title

      Differential Integral Equations 18-1

      Pages: 61-70

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Bubble Motion on water surface2005

    • Author(s)
      T.Yamazaki, S.Omata et.el.
    • Journal Title

      Gakuto Intern. Ser. Math. Sci. Appl. 23

      Pages: 209-216

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A wave equation in the curl-free space related to a smectics liquid crystal2005

    • Author(s)
      S.Omata
    • Journal Title

      Differential Integral Equations 18 No.1

      Pages: 61-70

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Bubble Motion on water surface2005

    • Author(s)
      T.Yamazaki, S.Omata, H.Yoshiuchi, K.Ohara
    • Journal Title

      Gakuto Intern. Ser. Math. Sci. Appl. 23

      Pages: 209-216

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A numerical treatment of thin film motion with free boundary2004

    • Author(s)
      S.Omata
    • Journal Title

      Adv. Math. Sci. Appl. 14, 1,

      Pages: 129-137

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Numerical computations for interfaces motion governed by triple potential well problem2004

    • Author(s)
      H.Iwasaki, S.Omata et.el
    • Journal Title

      Adv. Math. Sci. Appl. 14, 2

      Pages: 457-464

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A numerical treatment of thin film motion with free boundary2004

    • Author(s)
      S.Omata
    • Journal Title

      Adv. Math. Sci. Appl. 14, 1

      Pages: 129-137

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A numerical computation to the American option pricing via the discrete Morse flow2003

    • Author(s)
      S.Omata et.el.
    • Journal Title

      Theoretical and Applied Mechanics 52

      Pages: 261-266

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A numerical computation to the American option pricing via the discrete Morse flow2003

    • Author(s)
      S.Omata.H.Iwasaki, K.Nakane, X.Xiong, M.Sakuma
    • Journal Title

      Theoretical and Applied Mechanics 52

      Pages: 261-266

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Construction of solutions to heat-type problems with volume constraint via the discrete Morse flow

    • Author(s)
      K.Svadlenka, S.Omata
    • Journal Title

      to appear in Funkcialaj Ekvacio

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi