• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Annual Research Report

場の理論から得られる可積分系の代数的研究

Research Project

Project/Area Number 15540014
Research InstitutionOchanomizu University

Principal Investigator

武部 尚志  お茶の水女子大学, 理学部, 助教授 (60240727)

KeywordsWZW模型 / twisted WZW model / orbifold WZW模型 / 楕円曲線の退化 / conformal blockの分解
Research Abstract

共形場理論の一種であるWZW模型をRiemann球面上で考えた時、そのlevelがcritical level(Lie環のdual Coxeter数の(-1)倍)でない時は、理論は点の配置のmoduli空間上の可積分接続(KZ方程式)で記述される事は良く知られている。
楕円曲線上の標準的なWZW模型に対してもこのような可積分接続があり、KZB方程式と呼ばれる。これまでに本研究者によってKZB方程式の解の積分表示等が研究された。本年度はこれを本研究者が導入した非標準的なWZW模型(twisted WZW model)に拡張してEtingofの楕円型KZ方程式についての結果を得ることを目標とし、楕円曲線のmoduli空間上でのconformal blockの層の性質を調べた。土屋-上野-山田による標準的WZW模型と同様に、この層が局所自由層であり、楕円曲線が退化する所ではorbifold WZW模型のconformal blockの層へと分解する事が分かった。特に、affine Lie代数の可積分表現を楕円曲線に挿入して作ったconformal blockについては、楕円曲線が退化した時にconformal blockの分解によってorbifoldの特異点に現れる表現も可積分であり、有理共形場理論の例が構成されたことになる。論文は準備中である。

  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Kanehisa Takasaki, Takashi Takebe: "Anintegrable system on the moduli space of rational functions and its variants"Journal of Geometry and Physics. 47. 1-20 (2003)

  • [Publications] Takashi Takebe: "Trigonometric degeneration and orbifold WZW model I"International Journal of Modern Physics A. (発表予定)(未定).

URL: 

Published: 2005-04-18   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi