• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Modules over Noethrian rings and Abelian Groups

Research Project

Project/Area Number 15540031
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

HIRANO Yasuyuki  Okayama University, Faculty of Science, Associate Professor, 理学部, 助教授 (90144732)

Co-Investigator(Kenkyū-buntansha) NAKAJIMA Atsusi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (30032824)
IKEHATA Shuichi  Okayama University, Faculty of Environmental Science and Technology, Professor, 環境理工学部, 教授 (20116429)
OKUYAMA Takashi  Oita University, Faculty of Engineering, Professor, 工学部, 教授 (20177190)
CHIBA Katsuo  Niihama Institute of Technology, Associate Professor, 助教授 (60141933)
Project Period (FY) 2003 – 2004
KeywordsNoetherian ring / ideal / cyclic module / simple module / module of finite length / derivation / completely reducible / socle
Research Abstract

(1)It is well-known that a Weyl algebra R over a field of characteristic zero is a Noetherian simple algebra, but is not Artinian.. From this property, we know that a module of finite length over the Weyl algebra R is cyclic. From this fact, we considered the class of rings with this property. We proved that the following conditions are equivalent for a ring R : Every nonzero factor ring of R is not Artinian ; Every right R-module of finite length is cyclic ; Every left R-module of finite length is cyclic ; There exists an integer n such that every right R-module of finite length is generated by n-elements ; Every direct sum of finitely many copies of a simple right R-module is cyclic. We call a ring R a FLC-ring if every right R-module of finite length is cyclic. We proved that if R is a FLC-ring, then every finite normalizing extension of $R$ is also a FLC-ring. We also proved that the class of FLC rings is Morita stable.
(2)Let d be a K-derivation of the polynomial ring K[x_1,...,x_n] over a field K of characteristic 0 and let D be the extension of d to the fraction field K(x_1,...,x_n). Recently M.Ayad and P.Ryckelynck (2002) proved the following : If the kernel Ker(d) of d contains n-1 algebraically independent polynomials, then Ker(D) is equal to the fraction field Q(Ker(D)) of $Ker(D). We gave a short proof for this result.
(3)We studied for rings containing a finitely generated P-injective left ideal. We proved that if R contains a finitely generated P-injective left ideal I such that R/I is completely reducible, and if every left semicentral idempotent of R is central, then R is a left P-injective ring. As a byproduct of this result we gave a new characterization of a von Neumann regular ring with nonzero socle. Also we were able to find a necessary and sufficient condition for semiprime left Noetherian rings to be Artinian.

  • Research Products

    (12 results)

All 2005 2004 Other

All Journal Article (12 results)

  • [Journal Article] On a theorem of Ayad and Ryckelynck2005

    • Author(s)
      Y.Hirano
    • Journal Title

      Communications in Algebra 33

      Pages: 897-898

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On a theorem of Ayad and Ryckelynck2005

    • Author(s)
      Yasuyuki Hirano
    • Journal Title

      Communications in Algebra 33

      Pages: 897-898

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On rings all of whose modules of finite length are cyclic2004

    • Author(s)
      Y.Hirano
    • Journal Title

      Bulletin of Australian Mathematical Society 69

      Pages: 137-140

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On rings all of whose modules of finite length are cyclic2004

    • Author(s)
      Yasuyuki Hirano
    • Journal Title

      Bulletin of Australian Mathematical Society 69

      Pages: 137-140

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A generalization of semisimple Artinian rings

    • Author(s)
      Y.Hirano, H.Tsutsui
    • Journal Title

      Journal of Algebra and Its Applications

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rings whose simple modules have some properties

    • Author(s)
      Y.Hirano
    • Journal Title

      The proceedings of the fourth China-Japan-Korea International Symposium on Ring Theory (World Scientific)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On a finitely generated P-injective left ideal

    • Author(s)
      Y.Hirano, J.Y.Kim
    • Journal Title

      The proceedings of the fourth China-Japan-Korea International Symposium on Ring Theory (World Scientific)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Countable rings with acc on annihilators

    • Author(s)
      Y.Hirano, H.K.Kim
    • Journal Title

      Bulletin of Korean Mathematical Society

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A generalization of semisimple Artinian rings

    • Author(s)
      Yasuyuki Hirano, Hisaya Tsutsui
    • Journal Title

      Journal of Algebra and Its Applications (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rings whose simple modules have some properties

    • Author(s)
      Yasuyuki Hirano
    • Journal Title

      The proceedings of the fourth China-Japan-Korea International Symposium on Ring Theory(Edited by J.Chen, N.Ding and H.Marubayashi)(World Scientific) (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On a finitely generated P-injective left Ideal

    • Author(s)
      Yasuyuki Hirano, Jin Yong Kim
    • Journal Title

      The proceedings of the fourth China-Japan-Korea International Symposium on Ring Theory(Edited by J.Chen, N.Ding and H.Marubayashi)(World Scientific) (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Countable rings with acc on annihilators

    • Author(s)
      Yasuyuki Hirano, Hong Kee Kim
    • Journal Title

      Bulletin of Korean Mathematical Society (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi