• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Modular Representations of Algebraic Groups

Research Project

Project/Area Number 15540040
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka City University

Principal Investigator

KANEDA Masaharu  Osaka City University, Graduate School of Science, Professor, 大学院理学研究科, 教授 (60204575)

Co-Investigator(Kenkyū-buntansha) TANISAKI Toshiyuki  Osaka City University, Graduate School of Science, Professor, 大学院理学研究科, 教授 (70142916)
YAGITA Nobuakl  Ibaraki University, Department of Education, Professor, 教育学部, 教授 (20130768)
HASHIMOTO Yoshitake  Osaka City University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (20271182)
Project Period (FY) 2004 – 2006
Keywordslocalization / triangulated localization / tilting
Research Abstract

After the spectacular success of Bezrukavnikov, Mirkovic and Rumynin, BMR for short in what follows, in extending the localization theorem of D-modules on the flag variety to positive characteristic, we started to investigate the localization of \bar D-modules.
On a smooth variety X in positive characteristic BMR's \mathcal{D}, which they call the sheaf of crystalline differential operators, is Berthelot's sheaf of arithmetic differential operators of level 0. In "Localization of \bar D-modules" written with Hashimoto and Rumynin we first gave a simple presentation of \mathcal{D}-{(m)} the sheaf of arithmetic differential operators of level m. After BMR we proved that each\mathcal{D}"{(m)} is Azumaya. \bar \mathcal{D"{(m)}} is the endomorphism ring of the structure sheaf of X over its (m+1)-st Probenius twist, and is a central reduction of \mathcal{D"{(m)}}. We observed that the triangulated localization theorem for \bar\mathcal{D}-{(m)} holds almost iff the direct image F"{m+1}_* \mathcal{O}_X of the structure sheaf under the (m+1)-st Frobenius morphism is tilting, and verified that on the projective space F"{m+1}_*\mathcal{O}_X is tilting if the characteristic is large enough. On the flag variety, as the direct image of the \bar\mathcal{D*{(m)}} is the whole of the sheaf of classical differential operators \mathcal {Diff} and as the cohomology vanishing of \mathcal {Diff} fails in the case of SL_5 by Kashiwara-Lauritzen, one cannot expect the triangulated localization theorem holds for all \bar\mathcal{D-{(m)}1. Nevertheless, in view of BMR there may something special happening when m-0, and indeed, we found that F_*\mathcal{O}_{G/B} is tilting in the case of SL 3 in sufficiently large characteristic.
In a joint paper with Ye "Equivariant localization of \bar D modules on the flag variety of the symplectic group of degree 4" we also verified that F_*\mathcal{O}_{G/B} is tilting insufficiently large characteristic in case Sp_4 also.

  • Research Products

    (10 results)

All 2007 2006 2005 2004

All Journal Article (10 results)

  • [Journal Article] Equivariant localization of \bar D-modules on the flag variety of the symplectic group of degree 42007

    • Author(s)
      Kaneda M., Ye J.
    • Journal Title

      Journal of Algebra 309

      Pages: 236-281

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Equivariant localization of \bar D modules on the flag variety of the symplectic group o degree 42007

    • Author(s)
      Kaneda M., Ye J.
    • Journal Title

      Journal of Algebra 309

      Pages: 236-281

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On localization of \bar D-modules2006

    • Author(s)
      Hashimoto Y., Kaneda M., D.Rumynin
    • Journal Title

      Proc. AMS Joint Summer Research Conference Representations of Algebraic Groups, Quantum Groups and Lie Algebras, Contemp. Math. 413

      Pages: 43-62

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the realization of orbit closures as support varieties2006

    • Author(s)
      Tanisaki T., D.Nakano
    • Journal Title

      Journal of Pure and Applied Algebra 206 no.1-2

      Pages: 66-82

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra2006

    • Author(s)
      Tanisaki T., Xi N.
    • Journal Title

      Nagoya Mathematical Journal 182

      Pages: 285-311

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On localization of \bar D-modules2006

    • Author(s)
      Hashimoto Y., Kaneda M., D.Rumynin
    • Journal Title

      Proc. AMS Joint Summer Research Conference Representations of Algebraic Groups, Quantum Groups and lie Algebras, Contemp.Math. 413

      Pages: 43-62

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Kazhdan-Lusztig basis and geometric filtration of an affine Hecke algebra2006

    • Author(s)
      Tanisaki T., Xi N.
    • Journal Title

      Nagoya Mathematical Journal 182

      Pages: 285-311

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Applications of Atiyah-Hirzebruch spectral sequences for motivic cobordisms2005

    • Author(s)
      Yagita N.
    • Journal Title

      Proc. London Math. Soc. 90

      Pages: 783-816

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Applications of Atiyah-Hirzebruch spectra sequences for motivic cobordisms2005

    • Author(s)
      Yagita N.
    • Journal Title

      Proc.London Math.Soc. 90

      Pages: 783-816

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On Kashiwara's equivalence in positive characteristic2004

    • Author(s)
      Kaneda M.
    • Journal Title

      Manuscripta Math. 114

      Pages: 457-468

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi