• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Shafarevich Correspondence and Mordell-Weil Lattices

Research Project

Project/Area Number 15540048
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRIKKYO UNIVERSITY

Principal Investigator

SHIODA Tetsuji  Rikkyo U., Math., Prof.Emer., 理学部, 教授 (00011627)

Co-Investigator(Kenkyū-buntansha) AOKI Noboru  Rikkyo U., Math., Prof., 理学部, 教授 (30183130)
Project Period (FY) 2003 – 2004
KeywordsShafarevich Correspondence / Mordell-Weil Lattices / Elliptic Surface / Singular fibre / DS-triples / abc-theorem / Tate-Shafarevich group / Hodge Conjecture
Research Abstract

The idea of Shafarevich correspondence makes it possible to relate the elliptic curves having given discriminant with the integral points of the partner elliptic curve. Combined with the theory of Mordell-Weil lattices, this idea enables the principal investigator to obtain the following results :
(1)Determination of K3 surface with a maximal singular fibre
(2)Application of Davenport-Stothers triples to elliptic surfaces
(3)Abc-theorem and the number of singular fibres of an elliptic surface over P^1
On the other hand, the investigator Aoki have studied the arithmetic of elliptic curves and abelian varieties over a number field, as well as the Hodge conjecture. More specifi cally, he has treated the following subjects :
(4)Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion
(5)Hodge conjecture for the jacobian varieties of generalized Catalan curves,
(6)On the generalized Gross-Tate conjecture for elementary abelian 2-extensions

  • Research Products

    (12 results)

All 2005 2004 2003

All Journal Article (12 results)

  • [Journal Article] Elliptic surfaces and Davenport-Stothers triples2005

    • Author(s)
      塩田 徹治(Tetsuji Shioda)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli To appear

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Elliptic surfaces and Davenport-Stothers triples2005

    • Author(s)
      Tetsuji Shioda
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Acta Arithmetica 112

      Pages: 209-227

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Tokyo J.Math. 27

      Pages: 313-335

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 53

      Pages: 145-168

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Acta Arithmetica

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Tokyo J.Math.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The elliptic K3 surfaces with a maximal singular fibre2003

    • Author(s)
      塩田 徹治(Tetsuji Shioda)
    • Journal Title

      C.R.Acad.Sci.Paris, Ser.I 337

      Pages: 461-466

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the generalized Gross-Tate conjecture for elementary abelian 2-extensions2003

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 52

      Pages: 197-206

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The elliptic K3 surfaces with a maximal singular fibre2003

    • Author(s)
      Tetsuji Shioda
    • Journal Title

      C.R.Acad.Sci.Paris, Ser. I

      Pages: 337

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the generalized Gross-Tate conjecture for elementary abelian 2-extensions2003

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi