• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Algebraic structure of compact-like topological groups and convergence properties

Research Project

Project/Area Number 15540082
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionEhime University

Principal Investigator

SHAKHMATOV D.B  Ehime University, Faculty of Science, Professor, 理学部, 教授 (90253294)

Co-Investigator(Kenkyū-buntansha) NOGURA Tsugunori  Ehime University, Faculty of Science, Professor, 理学部, 教授 (00036419)
KISO Kazuhiro  Ehime University, Faculty of Science, Professor, 理学部, 教授 (60116928)
SASAKI Hiroski  Ehime University, Faculty of Science, Professor, 理学部, 教授 (60142684)
FUJITA Hiroshi  Ehime University, Faculty of Science, Assistant, 理学部, 助手 (60238582)
YAMADA Kohzo  Shizuoka University, Faculty of Education, Professor, 教育学部, 教授 (00200717)
Project Period (FY) 2003 – 2005
Keywordstopological group / countably compact space / pseudocompact space / Abelian group / separable space / hereditarily separable space / weight / 位相群
Research Abstract

Let X be a subspace of a topological group G. We say that X topologically generates G provided that the smallest subgroup of G algebraically generated by X is dense in G. Among all closed subsets X of G topologically generating G there exists one that has the smallest possible weight w(X), and we call this weight topologically generating weight. We investigated the topologically generating weight of a compact group G and obtained the following results :
Theorem 1.Topologically generating weight of a zero-dimensional compact Abelian group G coincides with the weight of G.
Theorem 2.Topologically generating weight of a connected compact Abelian group G coincides with the omega-root of weight of G. (Here the omega-root of a cardinal k is the smallest possible cardinal s such that the omega power of s exceeds k.)
Theorem 3.Topologically generating weight of a compact Abelian group G is equal to the product of the topologically generating weight of the connected component c(G) of G and the weight of G/c(G).
We also study algebraic structure of countably compact Abelian group. In particular, we investigate whether an Abelian group G of size at most 2^c admits a countably compact group topology. (Here c denotes the cardinality of the continuum.) Using forcing, we have constructed a model M of Zermelo-Fraenkel Axioms of Set Theory in which the following Theorm 4 holds.
Theorem 4.For an Abelian group G the following conditions are equivalent :
(i)G admits a separable countably compact group topology,
(ii)G admits a hereditarily separable countably compact group topology,
(iii)G admits a hereditarily separable countably compact group topology without infinite compact subsets,
(iv)G has size at most 2^c and satisfies conditions Ps and CC.
Theorem 5.For an infinite Abelian group the following conditions are equivalent :
(i)G has a separable pseudocompact group topology,
(ii)G has cardinality between c and 2^c and satisfies condition Ps.

  • Research Products

    (11 results)

All 2005 2003 Other

All Journal Article (11 results)

  • [Journal Article] Forcing hereditarily separable compact-like group topologies on Abelian groups2005

    • Author(s)
      D.Dikranjan, D.Shakhmatov
    • Journal Title

      Topology and its Applications 151

      Pages: 2-54

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The natural mappings i_n and k-subspaces of free topological groups on metrizable spaces2005

    • Author(s)
      K.Yamada
    • Journal Title

      Topology and its Applications 146/147

      Pages: 239-251

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The natural mappings in and k-subspaces of free topological groups on metrizable spaces2005

    • Author(s)
      K.Yamada
    • Journal Title

      Topology and its Applications 146/147

      Pages: 239-251

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A characterization of compactly generated matric groups2003

    • Author(s)
      H.Fujita, D.Shanhmatov
    • Journal Title

      Proceedings of the American Mathematical Society 131

      Pages: 953-961

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A characterization of compactly generated metric groups2003

    • Author(s)
      H.Fujita, D.Shakhmatov
    • Journal Title

      Proceedings of the American Mathematical Society 131

      Pages: 953-961

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Weight of closed subsets topologically generating a compact group

    • Author(s)
      D.Dikranjan, D.Shakhmatov
    • Journal Title

      Mathematische Nachrichten (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Around monothetic groups

    • Author(s)
      D.Dikranjan, D.Shakhmatov
    • Journal Title

      Communications in Algebra (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Selected topics from the structure theory of topological groups

    • Author(s)
      D.Dikranjan, D.Shakhmatov
    • Journal Title

      Recent Progress in General Topology II, Norty-Holland (Elsevier Science (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Weight of closed subsets topologically generating a compact group

    • Author(s)
      D.Dikranjan, D.Shakhmatov
    • Journal Title

      Mathematische Nachrichten (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Around monothetic groups.

    • Author(s)
      D.Dikranjan, D.Shakhmatove
    • Journal Title

      Communications in Algebra (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Selected topics from the structure theory of topological groups

    • Author(s)
      D.Dikranjan, D.Shakhmatov
    • Journal Title

      Recent Progress in General Topology II (North-Holland, Elsevier Science) (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi