• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Large cardinal properties of ideals

Research Project

Project/Area Number 15540115
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionNagoya University

Principal Investigator

MATSUBARA Yo  Nagoya University, Graduate School of information Science, Professor, 大学院・情報科学研究科, 教授 (30242788)

Co-Investigator(Kenkyū-buntansha) YOSHINOBU Yasuo  Nagoya University, Graduate School of information Science, Research Associate, 大学院・情報科学研究科, 助手 (90281063)
ABE Yoshihiro  Kanagawa University, Department of Engineering, Professor, 工学部, 講師 (10159452)
SHIOYA Masahiro  Tsukuba University, Department of mathematics, Assistant Professor, 数学系, 教授 (30251028)
Project Period (FY) 2003 – 2004
Keywordsaxiomatic set theory
Research Abstract

For X⊆P_κλ, if |{t∈X:sup(t)= δ}|<2^<|δ|> holds for every δ<λ, then we say that X is skinny. Let NS_<κλ> denote the non-stationary ideal over P_κλ. For X⊆P_κλ define the ideal NS_<κλ>|X as follows ; ∀Y⊆P_κλ(Y∈NS_<κλ>|X⇔X∩Y∈NS_<κλ>).
Y.Matsubara proved that if NS_<κλ>|X is precipitous then X has a skinny stationary subset of X・Previously Y.Matsubara and S.Shelah proved that if λ is a strong limit singular cardinal, then there is no skinny stationary subset of P_κλ.Therefore we can conclude that if λ is a strong limit singular cardinal, then NS_<κλ>|X cannot be precipitous for every X⊆P_κλ.
We also proved that assuming GCH below λ the existence of skinny stationary subset of P_κλ is equivalent to the diamond principle on {α<λ|cf(α)<κ}. Using this we can prove that under GCH the precipitousness of NS_<κλ> implies the diamond principle on every stationary subset of {α<λ|cf(α)<κ}. Therefore under GCH, the precipitousness of NS_<κλ> implies the ideal NS_λ|A cannot be saturated for every A⊆{α<λ|cf(α)<κ}. Here NS_λ denotes the non-stationary ideal over λ and NS_λ|A denotes the ideal over λ generated by NS_λ and λ-A・

  • Research Products

    (7 results)

All 2004 2003

All Journal Article (7 results)

  • [Journal Article] Fragments of Martin's Maximum in generic extensions2004

    • Author(s)
      Bernhard Konig, Yasuo Yoshinobu
    • Journal Title

      Mathematical Logic Quarterly 50・3

      Pages: 296-302

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Stationary preserving ideals over P_κλ2003

    • Author(s)
      Yo Matsubara
    • Journal Title

      Journal of the Mathematical Society of Japan 55・3

      Pages: 827-835

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Approachability and games on posets2003

    • Author(s)
      Yasuo Yoshinobu
    • Journal Title

      Journal of Symbolic Logic 68・2

      Pages: 589-606

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] σ-short Boolean algebras2003

    • Author(s)
      Makoto Ttakahashi, Yasuo Yoshinobu
    • Journal Title

      Mathematical Logic Quarterly 49・6

      Pages: 543-549

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A saturated stationary subset of P_κκ^+2003

    • Author(s)
      Masahiro Shioya
    • Journal Title

      Mathematical Research Letters 10

      Pages: 493-500

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Stationary preserving ideal over P_κλ2003

    • Author(s)
      Yo Matsubara
    • Journal Title

      Journal of the Mathematical Society of Japan 55・3

      Pages: 827-835

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] σ-short Boolean algebras2003

    • Author(s)
      Makoto Takahashi, Yasuo Yoshinobu
    • Journal Title

      Mathematical Logic Quarterly 49・6

      Pages: 543-549

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi