• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Study of asymptotic distribution of the Schroedinger operators with strong magnetic fields

Research Project

Project/Area Number 15540168
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKyoto Institute of Technology

Principal Investigator

IWATSUKA Akira  Kyoto Institute of Technology, Faculty of Textile Science, Professor, 繊維学部, 教授 (40184890)

Co-Investigator(Kenkyū-buntansha) TAMURA Hideo  Okayama University, Graduate School of Natural Science and Technology, Professor, 自然科学研究科, 教授 (30022734)
ITO Hiroshi  Ehime University, Faculty of Engineering, Professor, 工学部, 教授 (90243005)
MINE Takuya  Kyoto Institute of Technology, Faculty of Textile Science, Associate Professor, 繊維学部, 助教授 (90378597)
DOI Shin-ichi  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00243006)
MAITANI Fumio  Kyoto Institute of Technology, Faculty of Engineering and Design, Professor, 工芸学部, 教授 (10029340)
Project Period (FY) 2003 – 2005
KeywordsSchroedinger operator / magnetic field / spectrum / asymptotic distribution / boundary condition / eigenvalue
Research Abstract

Iwasuka showed that the spectrum of the Schroedinger operators with Poisson random potential is the whole real line potential has some negative part.
Mine obtained some detailed estimate of the number of the eigenvalues lying between the Landau levels when constant magnetic field is perturbed by multiple solenoidal (point) magnetic field, by using method of the perturbation of the canonical commutation relation.
Doi studied the structure of the singularity of the solution to the Schroedinger equations with quadratic potential with perturbation by using the analysis of the asymptotic behavior of the Hamilton flow.
Ito and Tamura proved the selfadjointness, the asymptotic completeness of the wave operator and the nonexistence of the eigenvalue for the Schrodinger operators with multiple delta like magnetic fields, and gave the leading term of the asymptotic behavior of their scattering amplitude when the distance between the centers of the magnetic fields tends to infinity.
Tamura also proved the convergence in norm of the resolvent of the two dimensional Dirac operators when a delta like magnetic field is approximated by smooth fields. He also obtained an asymptotic formula for the kernel of the Schroedinger semigroup in the case of singular potentials by applying his recent result that the Trotter product formula converges in the sense of operator norm for unbounded operators.

  • Research Products

    (12 results)

All 2006 2005 2004 2003

All Journal Article (12 results)

  • [Journal Article] The spectrum of Schroedinger operators with Poisson type random potential2006

    • Author(s)
      Kazunori ANDO, Akira IWATSUKA, Masahiro KAMINAGA, Fumihiko NAKANO
    • Journal Title

      Annales Henri Poincare 7・1

      Pages: 145-160

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The spectrum of Schroedinger operators with Poisson type random potential2006

    • Author(s)
      Kazunori ANDO, Akira IWATSUKA, Masahiro KAMINAGA, Fumihiko NAKANO
    • Journal Title

      Annales Henri Poincare 7-1

      Pages: 145-160

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Conformal slit mapping from periodic domains2005

    • Author(s)
      Fumio MAITANI
    • Journal Title

      Kodai Mathematical Journal 28・2

      Pages: 265-274

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The Aharonov-Bohm solenoids in a constant magnetic field2005

    • Author(s)
      Takuya MINE
    • Journal Title

      Annales Henri Poincare 6・1

      Pages: 125-154

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Conformal slit mapping from periodic domains2005

    • Author(s)
      Fumio MAITANI
    • Journal Title

      Kodai Mathematical Journal 28-2

      Pages: 265-274

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The Aharonov-Bohm solenoids in a constant magnetic field2005

    • Author(s)
      Takuya MINE
    • Journal Title

      Annales Henri Poincare 6-1

      Pages: 125-154

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Dispersion of singularities of solutions for Schroedinger equations2004

    • Author(s)
      Shin-ichi DOT
    • Journal Title

      Communications in Mathematical Physics 250・3

      Pages: 473-505

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Scattering of Dirac particles by electromagnetic fields with small support in two dimensions and effect from scalar potentials2004

    • Author(s)
      Hideo TAMURA
    • Journal Title

      Annales Henri Poincare 5・1

      Pages: 75-118

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Dispersion of singularities of solutions for Schroedinger equations2004

    • Author(s)
      Shin-ichi DOI
    • Journal Title

      Communications in Mathematical Physics 250-3

      Pages: 473-505

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Scattering of Dirac particles by electromagnetic fields with small support in two dimensions and effect from scalar potentials2004

    • Author(s)
      Hideo TAMURA
    • Journal Title

      Annales Henri Poincare 5-1

      Pages: 75-118

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields2003

    • Author(s)
      Hiroshi T.ITO, Hideo TAMURA
    • Journal Title

      Asymptotic Analysis 34・3-4

      Pages: 199-240

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields2003

    • Author(s)
      Hiroshi T.ITO, Hideo TAMURA
    • Journal Title

      Asymptotic Analysis 34-3/4

      Pages: 199-240

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi