• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Scattering of Dirac particles by mabnetic fields and spectral theory

Research Project

Project/Area Number 15540206
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionOkayama University

Principal Investigator

TAMURA Hideo  Okayama University, Science, Professor, 大学院・自然科学研究科, 教授 (30022734)

Co-Investigator(Kenkyū-buntansha) HIROKAWA Masao  Okayama University, Science, Professor, 大学院・自然科学研究科, 教授 (70282788)
KATSUDA Atsushi  Okayama University, Science, Associate Professor, 大学院・自然科学研究科, 助教授 (60183779)
IWATSUKA Akira  Kyoto Institute of Technology, Professor, 繊維学部, 教授 (40184890)
ITO Hiroshi  Ehime University, Engineering, Professor, 工学部, 教授 (90243005)
Project Period (FY) 2003 – 2005
Keywordsscattering by magnetic fields / Dirac operator / Pauli operator / Aharonov-Bohm effect / resonance at zero energy
Research Abstract

The subject of this research project is the spectral theory for Dirac operators with magnetic fields in two dimensions, and the special emphasis is placed on the study about the relation between scattering of Dirac particles by magnetic fields and resonance at zero energy of Schrodinger operators. The motion of massless Dirac particles is governed by the operator D(A,V)=σ・ (-i∇-A)+V acting on [L^2(R^2)]^2, where A(x):R^2→R^2 is a magnetic potential, V(x):R^2→R is a electronic potential and σ=(σ_1,σ_2) is a vector with 2 × 2 Pauli matrices as components. The square of Dirac Operator D(A,0) without scalar potential V becomes the diagonal operator with Schrodinger operators H_±=(-i∇-A)^2±b as diagonal components (Pauli operator), where b=∇×A:R^2→R denotes the magnetic field associated with vector potential A. The both operators H_± 【greater than or equal】 0 are nonnegative, but they have a different spectral structure at zero energy. If, for example, b∈C^∞_0(R^2) is compactly supported an … More d it has the noninteger flux α defined by α=∫b(x)dx/2π 【not a member of】 Z, then equation H_u=0 has a bounded solution (resonance) not in L^2, while H_+u=0 does not have such a solution. Thus the zero energy resonance of Schrodinger operators appears in the spectral theory for Dirac operators in a quite natural way. The present project deals with the following two subjects closely related to zero energy resonance : (1)resolvent convergence in norm to Dirac operators with solenoidal magnetic fields (point-like fields) : (2)scattreing by electromagnetic fields with small support. These subjects have both been discussed in physical articles when electromagnetic fields are spherically symmetric, and the results obtained are based on a calculation using the Bessel functions. The main achievement is that we have made clear the role of zero energy resonance hidden behind the explicit calculation from a mathematical point of view by eliminating the assumption of spherical symmetry. The scattering of Dirac particles by electromegnetic fields with small support appears in the model of cosmic string as an important problem of mathematical physics. The application to it has been also studied. Less

  • Research Products

    (12 results)

All 2006 2004 2003

All Journal Article (12 results)

  • [Journal Article] Exponential product approximation to integral kernel of Schrodinger semigroup and to kernel of Dirichlet Laplacian2006

    • Author(s)
      一瀬 孝, 田村 英男
    • Journal Title

      J. Reine Angew. Math. 292(掲載決定・校正済)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Exponential product approximation to integral kernel of Schroedinger semigroup and to heat kernel of Dirichlet Laplacian2006

    • Author(s)
      T.Ichinose, H.Tamura
    • Journal Title

      J.Reine Angew.Math. 292(in press)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Scattering of Dirac paerticles by electromagnetic fields with small support in two dimensions and effect from scalar potentials2004

    • Author(s)
      田村 英男
    • Journal Title

      Ann. Henri Poicare 5

      Pages: 75-118

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Sharp error bound on norm convergence of exponential product formula and approximation to kernels of Schrodinger semigroups2004

    • Author(s)
      一瀬 孝, 田村 英男
    • Journal Title

      Commun, Partial Differ. Eqs. 29

      Pages: 1905-1918

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Note on the norm convergence of the unitary Trotter product formula2004

    • Author(s)
      一瀬 孝, 田村 英男
    • Journal Title

      Lett. Math. Phys. 70

      Pages: 65-81

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Scattering of Dirac particles by electromagnetic fields with small support in two dimensions and effect from scalar potentials2004

    • Author(s)
      H.Tamura
    • Journal Title

      Ann.Henri Poincare 5

      Pages: 75-118

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Sharp error bound on norm convergence of exponential product formula and approximation to kernels of Schroedinger semigroups2004

    • Author(s)
      T.Ichinose, H.Tamura
    • Journal Title

      Commun.Partial.Differ.Eqs. 29

      Pages: 1905-1918

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Note on the norm convergence of the unitary Trotter product formula2004

    • Author(s)
      T.Ichinose, H.Tamura
    • Journal Title

      Lett.Math.Phys. 70

      Pages: 65-81

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Resolvent convergence in norm for Dirac operator with AharonovBohm field2003

    • Author(s)
      田村 英男
    • Journal Title

      J. Math. Phys. 44

      Pages: 2967-2993

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields2003

    • Author(s)
      伊藤 宏, 田村 英男
    • Journal Title

      Asymptot. Anal. 34

      Pages: 199-240

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field2003

    • Author(s)
      H.Tamura
    • Journal Title

      J.Math.Phys. 44

      Pages: 2967-2993

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields2003

    • Author(s)
      Hiroshi, T.Ito, H.Tamura
    • Journal Title

      Asymptot.Anal. 34

      Pages: 199-240

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi