• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

A Newral Network for reducing the Peak-to-Average Power Ratio in Orthogonal Frequency-Division Multiplexing Systems

Research Project

Project/Area Number 15560332
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Communication/Network engineering
Research InstitutionOsaka Prefecture University

Principal Investigator

YAMASHITA Katsumi  Osaka Prefecture University, Graduate School of Engineering, Professor, 工学研究科, 教授 (60158152)

Co-Investigator(Kenkyū-buntansha) OHTA Masaya  Osaka Prefecture University, Graduate School of Engineering, Lecturer, 工学研究科, 講師 (70288786)
LIN Hai  Osaka Prefecture University, Graduate School of Engineering, Assistant Professor, 工学研究科, 助手 (40336805)
Project Period (FY) 2003 – 2004
KeywordsOFDM modulation / PAPR problem / Newral network / Optimization problem / Circuit realization / FPGA / Block SLM method / Improvement of BER performance
Research Abstract

Orthogonal frequency-division multiplexing(OFDM) modulation can reduce the influence of inter-symbol interference and enable high-quality communication. However, an OFDM signal has a large instantaneous peak power, which is measured as peak-to-average power ratio(PAPR), since the subcarrier signals are modulated independently. A variety of techniques for reducing PAPR have been proposed, the selective mapping method(SLM) is the simplest scrambing for reducing the PAPR in which it generates several scrambimg sequences at random and selects the sequence that gives the lowest PAPR. Although SLM has few computation time, the PAPR is not enough reduced.
We have proposed the PAPR reduction method, in which the PAPR reducing problem is formulated as a combinatorial optimization problem and Hopfield neural nertwork(HNN) is applied to solving the optimization. HoweverHNN does not sufficiently improve the performance of conventional methods because the mechanism of HNN is the same as that of the gradient descent method, and if the state is caught in a local minimum point then HNN cannot escape from the point and does generate any novel solutions.
In this research, we propose a novel PAPR reduction method by using the chaotic neural networks(CNN), which has been proposed by Nozawa and it has better performance for combinatorial optimization. First, we formulate the PAPR reduction problem as a combinatorial optimization problem, and HNN is introduced for the optimization. To improve the performance, a chaotic neural network is applied for leading to considerable gains, and we evaluate its performance by numerical experiments.

  • Research Products

    (12 results)

All 2004

All Journal Article (12 results)

  • [Journal Article] An Equalization Technique for High-Speed-Mobile OFDM Systems in Rayleigh Multipath Channels2004

    • Author(s)
      D.G.Li
    • Journal Title

      IEICE Trans.on Communications E87-B

      Pages: 159-160

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Channel Estimation for Mobile OFDM Systems Using CR Splines2004

    • Author(s)
      B.Guo
    • Journal Title

      電気学会論文誌C 124-C

      Pages: 929-930

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A Cluster Map Based Blind RBF Decision Feedback Equalizer with Reduced Computational Complexity2004

    • Author(s)
      H.Lin
    • Journal Title

      IEICE Trans.on Fundamentals E87-A

      Pages: 2755-2760

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A Neural Equalizer for Nonlinearly Distorted OFDM Signals2004

    • Author(s)
      H.M.S.B.Senevirathna
    • Journal Title

      Int.Journal of Knowledge-based and Intelligent Engineering Systems 8-3

      Pages: 171-177

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An FPGA Implementation of 1,024-Neuron System for PAPR Reduction of OFDM Signal2004

    • Author(s)
      M.Ohta
    • Journal Title

      Proc.of Int.Joint Conf.on Neural Networks

      Pages: 2625-2630

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Blind Signal Recovery in Multiuser MIMO-OFDM System2004

    • Author(s)
      B.Guo
    • Journal Title

      Proc.of IEEE Int.Midwest Symp.on CAS

      Pages: 637-640

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An Equalization Technique for High-Speed-Mobile OFDM Systems in Rayleigh Multipath Channels2004

    • Author(s)
      D.G.Li, K.Yamashita
    • Journal Title

      IEICE Trans.on Communications E87-B, No.1

      Pages: 158-160

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Channel Estimation for Mobile OFDM Systems Using CR Splines2004

    • Author(s)
      B.Guo, D.Li, K.Yamashita
    • Journal Title

      IEEJ Trans on Electronics, Information and Systems Vol.124-C, No.3

      Pages: 929-930

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A Cluster Map Based Blind RBF Decision Feedback Equalizer with Reduced Computational Complexity2004

    • Author(s)
      H.Lin, K.Yamashita
    • Journal Title

      IEICE Trans.on Fundamentals Vol.E87-A, No.10

      Pages: 2755-2760

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A Neural Equalizer for Nonlinearly Distorted OFDM and Signals2004

    • Author(s)
      H.M.S.B.Senevirathna, K.Yamashita, H.Lin
    • Journal Title

      Int.Journal of Knowledge-based Intelligent Engineering Systems 8-3

      Pages: 171-177

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] An FPGA Implementation of 1,024-Neuron System for PAPR Reduction of OFDM Signal2004

    • Author(s)
      M.Ohta, A.Mori, K.Yamashita
    • Journal Title

      Proc.of Int.Joint Conf.on Neural Networks

      Pages: 2625-2630

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Blind Signal Recovery in Multiuser MIMO-OFDM System2004

    • Author(s)
      B.Guo, H.Lin, K.Yamashita
    • Journal Title

      Proc.of IEEE Int.Midwest Symp.on CAS

      Pages: 637-640

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi