• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Annual Research Report

Allen-Cahn方程式におけるV字型進行曲面波

Research Project

Project/Area Number 15740102
Research InstitutionTokyo Institute of Technology

Principal Investigator

谷口 雅治  東京工業大学, 大学院・情報工学研究科, 助教授 (30260623)

Keywordsstability / traveling wave / Allen-Cahn equation / multi-dimensional wave
Research Abstract

Allen-Cahn方程式を含む相安定な反応拡散方程式において,V字型進行曲面波の存在をしめし,その(局所)安定性を証明するという目的はH.Ninomiya and M.Taniguchi(J.Difrerential Equations,213,No 1005),204-233)において達成されたことを報告する.
この研究の過程において新たな課題が発生した.以下の課題である.
(1)1次元進行波をもつ双安定な非線形項はどのようなものがあるか?
(2)V字型進行曲面波の安定性は空間大域的であるか?
Allen-Cahn方程式にあらわれる非線形項は3次式であるが,双安定な非線形項はこれに限られない.しかしながら1次元進行波をもたない双安定な非線形項も知られている.課題(1)および(2)にたいする部分的な回答を,Ninomiya and Taniguchi(Discrete and Continuous Dynamical Systems,掲載受理)において行った.1次元進行波をもつ双安定な非線形項の例を出し,その場合の進行波の具体的な表現式を与えた.Allen-Cahn方程式および,それらのより一般の非線形項をもつ反応拡散方程式において,初期擾乱が無限遠方で減衰するならば,V字型進行曲面波が漸近安定であることを証明した.
無限遠方で減衰しない初期摂動にたいして,V字型進行曲面波の漸近安定性は,未解決の課題である.Allen-Cahn方程式でなく,ある意味でその極限形と考えられる曲率流方程式において,Nara and Taniguchi(Discrete and Continuous Dynamical Systems,掲載受理)により,直線およびV字型進行曲面波が漸近安定となる十分条件を与えた.また,漸近安定とならない有界な初期擾乱の例も与えた.
以上を報告する.

  • Research Products

    (4 results)

All 2006 2005 Other

All Journal Article (4 results)

  • [Journal Article] Stability of a traveling wave in curvature flows For spatially non-decaying initial perturbations2006

    • Author(s)
      Nara, Taniguchi
    • Journal Title

      Discrete and Continuous Dynamical Systems 14・1

      Pages: 203-220

  • [Journal Article] Existence and global stability of traveling curved Fronts in the Allen-Cahn equations2005

    • Author(s)
      Ninomiya, Taniguchi
    • Journal Title

      Journal of Differential Equations 213・1

      Pages: 204-233

  • [Journal Article] Global stability of traveling curved fronts in the Allen-Cahn equations

    • Author(s)
      Ninomiya, Taniguchi
    • Journal Title

      Discrete and Continuous Dynamical Systems 掲載受理

  • [Journal Article] Convergence to V-shaped fronts in curvature flows For spatially non-decaying initial perturbations

    • Author(s)
      Nara, Taniguchi
    • Journal Title

      Discrete and Continuous Dynamical Systems 掲載受理

URL: 

Published: 2007-04-02   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi