2019 Fiscal Year Final Research Report
Self-Organizing Motion Primitives for Robots Utilizing Deep Learning
Project/Area Number |
15H01710
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Intelligent robotics
|
Research Institution | Waseda University |
Principal Investigator |
Ogata Tetsuya 早稲田大学, 理工学術院, 教授 (00318768)
|
Co-Investigator(Kenkyū-buntansha) |
有江 浩明 早稲田大学, 次世代ロボット研究機構, その他(招聘研究員) (20424814)
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | 深層学習 / 予測学習 / マルチモーダル / 動作プリミティブ / RTミドルウェア |
Outline of Final Research Achievements |
In recent years, deep learning has been used in a variety of domains, but its application is limited to cyber data processing. It is not sufficiently easy to work in the real world. On the other hand, there is a strong expectation for life support using robots. In recent years, the possibility of general-purpose robots has been attracting attention. In this study, we have developed a novel robot learning model using deep learning. Also we have improved the robot performance for manipulating various materials and reduced the development cost with robot operation system, RT-Middleware. Specifically, based on the findings of cognitive developmental robotics research which relates to infant developmental learning including imitation learning, predictive coding, etc. we developed multiple robots which are modeling the sensory-motor information (experience) by deep learning.
|
Free Research Field |
知能ロボティクス,認知発達ロボティクス
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は「手離れ」がよく,その後,多様な企業との共同研究に展開している. 例えば,デンソーウェーブ,ベッコフオートメーション,そして研究代表者が技術顧問を務めるエクサウィザーズが開発した「マルチモーダルAIロボット」は,タオルの折畳み,サラダの盛り付けなどを実現している(2017).また日立製作所では,ドアへの接近,ドア開け,通り抜けという全身動作を,複数の深層学習モデルを用いて学習することに成功した(2018).デンソーウェーブとエクサウィザーズは,小型ロボットCOBOTTAを利用した粉体秤量を実現した(2018). 今後,このような多くのロボット応用に発展していくことが期待される.
|