• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Research on Markov processes via stochastic analysis

Research Project

  • PDF
Project/Area Number 15H03624
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKyoto University

Principal Investigator

Shigekawa ichiro  京都大学, 理学研究科, 教授 (00127234)

Co-Investigator(Kenkyū-buntansha) 矢野 孝次  京都大学, 理学研究科, 准教授 (80467646)
Research Collaborator Kumagai Takashi  
Hino Masanori  
Aida Shigeki  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywords確率解析 / マルコフ半群 / エルゴード性 / スペクトル / 対数ソボレフ不等式 / スペクトルギャップ / マルコフ過程 / Dirichlet 形式
Outline of Final Research Achievements

We conducted research on Markov processes using stochastic analysis methods for cases of various state spaces, such as Euclid space, Riemannian manifold, and infinite dimensional space such as Wiener space and path space. In the case of the one-dimensional diffusion process, the spectrum of the Kolmogorov diffusion process was determined in the framework of supersymmetry. Also, in the case of Kummer process, spectra were determined in Zygmundt space or Orlicz space.
Furthermore, we characterized the ultracontractivity using the asymmetric Dirichlet form and applied to the asymptotic behavior of the fundamental solution in the case of compact Riemannian manifolds. We also constructed a non-symmetric diffusion process on the Wiener space as a typical example of an infinite dimensional space.

Free Research Field

確率論

Academic Significance and Societal Importance of the Research Achievements

拡散過程の研究を行ったが、これらは数理ファイナンス、保険数学に関連するものが含まれる。また拡散過程の不変測度として、統計に表れる分布が出てくるので、統計への応用の道も開かれる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi