2020 Fiscal Year Final Research Report
Analysis of moduli structure of completely integrable systems and related geometry
Project/Area Number |
15H03628
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Kumamoto University |
Principal Investigator |
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | モノドロミー / Katz理論 / KZ方程式 / 接続係数 / 共形場理論 / 不確定特異性 / ストークス係数 / 漸近展開 |
Outline of Final Research Achievements |
We tried to extend the Katz theory for ordinary differential equations to higher dimensional case, and applied it to the global analysis of integrable systems. Here global analysis means the description of the monodromy, the connection problem and the description of the Stokes multipliers for irregular singular case. For KZ type equation, which comes from mathematical physics and plays an important role, we succeeded to define the multiplicative middle convolution, and gave an effective way to construct monodromy recursively. We also formulated the connection problem in higher dimensional case in a natural way. For integrable systems with irregular singularities, we gave effective methods to compute the asymptotic behaviors and Stokes multipliers.
|
Free Research Field |
複素領域における微分方程式
|
Academic Significance and Societal Importance of the Research Achievements |
高次元の完全積分可能系の理論の構築は,常微分方程式論の単なる拡張ではなく,数学・物理学に本質的な進展をもたらす重要な取り組みと考えられている。特にミラー対称性をはじめとする数理物理の最前線のテーマは高次元理論を内包しており,高次元理論を整備することで大きな進展が期待される。本研究は常微分方程式論で大きな成功を収めたKatz理論の高次元化を目指したもので,完全積分可能系の解の大域的な挙動を調べる様々な手法を与え,数学・物理学の先鋭的研究の基盤を整備するという意義があったと考える。
|