• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Thermodynamic formalism for conformal semigroup actions

Research Project

  • PDF
Project/Area Number 15H06416
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Basic analysis
Research InstitutionShimane University

Principal Investigator

Jaerisch Johannes  島根大学, 総合理工学研究科, 講師 (90741869)

Research Collaborator SUMI Hiroki  京都大学, 大学院人間・環境学研究科共生人間学専攻数理科学講座, 教授 (40313324)
MATSUZAKI Katsuhiko  早稲田大学, 教育・総合科学学術院, 教授 (80222298)
KESSEBÖHMER Marc  University Bremen
STADLBAUER Manuel  University of Rio de Janeiro
MUNDAY Sara  University of Bologna
Project Period (FY) 2015-08-28 – 2017-03-31
KeywordsErgodic theory / Dynamical systems / Fractal Geometry / Hyperbolic Geometry / Geometric group theory
Outline of Final Research Achievements

We have investigated the interplay of dynamics and geometry of conformal semigroup actions. Two of the main results are the following.
1) We have applied the multifractal analysis to random complex dynamical systems. In particular, we have investigated the Hoelder exponent of the long-term behavior depending on the initial value (J. Jaerisch, H. Sumi, Adv. Math 313 (2017), 36 pages).
2) We have investigated the Poincare exponent of abstract free groups and its normal subgroups. In the proof we use the discrete Laplacian on the associated Cayley graph (J. Jaerisch, K. Matsuzaki, Proc. AMS, to appear 2017).

Free Research Field

Ergodic theory and dynamical systems

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi