2018 Fiscal Year Research-status Report
Project/Area Number |
15K01200
|
Research Institution | Otsuma Women's University |
Principal Investigator |
落合 友四郎 大妻女子大学, 社会情報学部, 准教授 (60423034)
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | 金融情報学 |
Outline of Annual Research Achievements |
金融データーにはネットワークデータ(企業間ネットワーク、株式保有関係、取引関係など)と時系列データ(企業業績、株価)の2種類のデータ構造がある。これらのタイプの違うデータ構造をもつデータを統合して解析する手法の開発を目指した。特に、ネットワークの各ノード上に時系列データが付随した複合的なデータに対して畳み込みニューラルネットワークを適用する方法を検討した。
具体的には、畳み込みニューラルネットワークなどの学習マシーンにデータを入力する前に、スペクトラルクラスタリングによって次元圧縮を行い学習時間を圧縮する方法を検討・応用した。この手法を用いる対象データとしては、ネットワークデータと、そのネットワークのノードに付随した時系列データである。金融データとしては株式市場における企業間ネットワークと株価・業績などの時系列データを想定している。
今回用いたスペクトラルクラスタリングは、ネットワークの隣接行列からラプラシアンを構成して、その固有値問題(主成分分析)を解いて、寄与の大きい固有値・固有ベクトルを求める。それを2次元グラフ上に表現して、そのグラフ上で時系列データを表現すると画像データと類似したデータ構造となる。そのうえで畳み込みニューラルネットワークを適用することによって、次元圧縮で高速に学習されるアルゴリズムとなる。今回、これを他分野のデータに応用したが、今後金融データ(企業業績、株価データ)に応用する予定である。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
ネットワークの各ノード上に時系列データが付随した複合的なデータに対する手法を開発した。畳み込みニューラルネットワークなどの学習マシーンにデータを入力する前にスペクトラルクラスタリングによって次元圧縮を行い学習時間を圧縮する方法を検討・応用した。
|
Strategy for Future Research Activity |
スペクトラルクラスタリングと畳み込みニューラルネットワークを組み合わせた手法を決算データ、株価データなどに対して応用していきたい。
|
Causes of Carryover |
金融市場データの購入を延期したために、次年度使用額が生じた。今後、金融市場データを購入する予定である。
|