• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Study on integer solutions of exponential Diophantine equations

Research Project

  • PDF
Project/Area Number 15K04786
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOita University

Principal Investigator

Terai Nobuhiro  大分大学, 理工学部, 教授 (00236978)

Project Period (FY) 2015-04-01 – 2018-03-31
Keywords指数型不定方程式 / 整数解 / Jesmanowicz予想 / Terai予想 / Baker理論 / 一般化されたFermat方程式 / 楕円曲線
Outline of Final Research Achievements

Our purpose of this research is to determine integer solutions of exponential Diophantine equations (1) a^x + b^y = c^z, (2) (pm^2 + 1)^x + (qm^2 - 1)^y = (rm)^z with p+q=r^2 (3) (a^φ(m)-1)/m = x^l, where φ is Euler's totient function, under some conditions. Our method is based on elementary methods, Baker's method and deep results on generalized Fermat equations via sophisticated arguments in the theory of elliptic curves and modular forms.

Free Research Field

整数論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi