2018 Fiscal Year Final Research Report
On the Lefschetz property of complete intersections
Project/Area Number |
15K04812
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Niigata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
和地 輝仁 北海道教育大学, 教育学部, 准教授 (30337018)
五十川 読 熊本高等専門学校, 共通教育科(八代キャンパス), 教授 (80223056)
|
Research Collaborator |
Watanabe Junzo
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 可換環 / 完全交叉環 / アルティン環 / ゴレンスタイン環 / レフシェッツ性 / 対称式 |
Outline of Final Research Achievements |
We studied the Lefschetz property of complete intersections. Main results of this research are the followings: 1. Any quadratic complete intersection with certain action of the symmetric group has the strong Lefschetz property. 2. Suppose that the EGH Conjecture is true for a complete intersection A. Then A has the Sperner property. 3. All complete intersections defined by products of general linear forms have the strong Lefschetz property. 4. We gave a characterization of the Macaulay dual generators for quadratic complete intersections. 5. We gave another proof of some known results on power sum symmetric polynomials in three variables.
|
Free Research Field |
可換環論
|
Academic Significance and Societal Importance of the Research Achievements |
完全交叉のレフシェッツ性に関する研究は、コンピュータサイエンスとも関連のある多項式環論の基礎研究の一つである。また、レフシェッツ性は、線形写像の最強のジョルダン分解を求める問題とも関連しており、今後、線形写像のレフシェッツ性は、代数学の基本的な事項として位置付けられるのではないだろうか。
|