• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

On the Lefschetz property of complete intersections

Research Project

  • PDF
Project/Area Number 15K04812
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNiigata University

Principal Investigator

Harima Tadahito  新潟大学, 人文社会科学系, 教授 (30258313)

Co-Investigator(Kenkyū-buntansha) 和地 輝仁  北海道教育大学, 教育学部, 准教授 (30337018)
五十川 読  熊本高等専門学校, 共通教育科(八代キャンパス), 教授 (80223056)
Research Collaborator Watanabe Junzo  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywords可換環 / 完全交叉環 / アルティン環 / ゴレンスタイン環 / レフシェッツ性 / 対称式
Outline of Final Research Achievements

We studied the Lefschetz property of complete intersections. Main results of this research are the followings: 1. Any quadratic complete intersection with certain action of the symmetric group has the strong Lefschetz property. 2. Suppose that the EGH Conjecture is true for a complete intersection A. Then A has the Sperner property. 3. All complete intersections defined by products of general linear forms have the strong Lefschetz property. 4. We gave a characterization of the Macaulay dual generators for quadratic complete intersections. 5. We gave another proof of some known results on power sum symmetric polynomials in three variables.

Free Research Field

可換環論

Academic Significance and Societal Importance of the Research Achievements

完全交叉のレフシェッツ性に関する研究は、コンピュータサイエンスとも関連のある多項式環論の基礎研究の一つである。また、レフシェッツ性は、線形写像の最強のジョルダン分解を求める問題とも関連しており、今後、線形写像のレフシェッツ性は、代数学の基本的な事項として位置付けられるのではないだろうか。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi